spray-induced gene silencing

喷雾诱导的基因沉默
  • 文章类型: Journal Article
    全球变化正在加剧全球森林中病原真菌引起的植物病害的流行。化学杀菌剂的常规使用,这在农业环境中很常见,没有被批准在森林生态系统中应用,所以新的控制策略势在必行。SIGS(喷雾诱导的基因沉默)是一种有前途的方法,可以响应环境中存在的双链RNA(dsRNA)来调节真核生物中靶基因的表达,从而触发RNA干扰(RNAi)机制。SIGS在针对某些作物真菌病原体部署时,在降低毒力方面取得了显着成功,如镰刀菌,灰霉病菌和菌核病菌,在其他人中。然而,评估SIGS管理森林病原体的适用性的研究明显缺乏。本研究旨在确定SIGS是否可用于控制圆形镰刀菌,一种影响广泛的森林病原体,会导致松树病。通过细菌合成,我们产生了dsRNA分子来靶向与囊泡运输有关的真菌必需基因(Vps51,DCTN1和SAC1),信号转导(Pp2a,Sit4、Ppg1和Tap42),和细胞壁生物发生(Chs1,Chs2,Chs3b,Gls1)代谢途径。我们证实了F.circinatum能够吸收外部应用的dsRNA,触发对病原体毒力的抑制。此外,这项研究率先证明,在SIGS中反复应用dsRNA比单一应用更有效地保护植物。因此,SIGS成为管理植物病原体的有效和可持续的方法,展示其在控制受检疫措施影响的全球重大森林病原体方面的功效。
    Global change is exacerbating the prevalence of plant diseases caused by pathogenic fungi in forests worldwide. The conventional use of chemical fungicides, which is commonplace in agricultural settings, is not sanctioned for application in forest ecosystems, so novel control strategies are imperative. SIGS (Spray-Induced Gene Silencing) is a promising approach that can modulate the expression of target genes in eukaryotes in response to double-stranded RNA (dsRNA) present in the environment that triggers the RNA interference (RNAi) mechanism. SIGS exhibited notable success in reducing virulence when deployed against some crop fungal pathogens, such as Fusarium graminearum, Botrytis cinerea and Sclerotinia sclerotiorum, among others. However, there is a conspicuous dearth of studies evaluating the applicability of SIGS for managing forest pathogens. This research aimed to determine whether SIGS could be used to control Fusarium circinatum, a widely impactful forest pathogen that causes Pine Pitch Canker disease. Through a bacterial synthesis, we produced dsRNA molecules to target fungal essential genes involved to vesicle trafficking (Vps51, DCTN1, and SAC1), signal transduction (Pp2a, Sit4, Ppg1, and Tap42), and cell wall biogenesis (Chs1, Chs2, Chs3b, Gls1) metabolic pathways. We confirmed that F. circinatum is able to uptake externally applied dsRNA, triggering an inhibition of the pathogen\'s virulence. Furthermore, this study pioneers the demonstration that recurrent applications of dsRNAs in SIGS are more effective in protecting plants than single applications. Therefore, SIGS emerges as an effective and sustainable approach for managing plant pathogens, showcasing its efficacy in controlling a globally significant forest pathogen subject to quarantine measures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    枯丝核菌是一种土壤传播的病原体,具有14个吻合组(AG),不同的亚组在基因上是不同的。然而,导致真菌致病性的遗传因素尚未得到很好的表征。在这项研究中,对R.solaniAG1-ZJ的基因组进行了测序。作为结果,获得含有12,197个推定编码基因的41.57Mb基因组草图。对11种不同AG的比较基因组分析揭示了AG之间的保守性和独特特征。此外,一个新的效应子家族,包含一个67个氨基酸的保守结构域,在担子菌真菌中独特的特征。在AG4-JY中确定了两个含有保守域的效应子,并命名为RsUEB1和RsUEB2。此外,喷雾诱导的基因沉默策略用于产生能够沉默RsUEB1和RsUEB2保守结构域序列的dsRNA.此dsRNA可以显著降低RsUEB1和RsUEB2的表达和AG4-JY对谷子的致病性,玉米,大米和小麦。总之,这项研究提供了重要的见解R.solani的致病机制。保守结构域的鉴定和含有保守结构域的基因的dsRNA沉默的成功使用将为控制谷类作物中的鞘枯病提供新的策略。
    Rhizoctonia solani is a soil-borne pathogen with 14 anastomosis groups (AGs), and different subgroups are genetically diverse. However, the genetic factors contributing to the pathogenicity of the fungus have not been well characterized. In this study, the genome of R. solani AG1-ZJ was sequenced. As the result, a 41.57 Mb draft genome containing 12,197 putative coding genes was obtained. Comparative genomic analysis of 11 different AGs revealed conservation and unique characteristics between the AGs. Furthermore, a novel effector family containing a 67 amino acid conserved domain unique in basidiomycetous fungi was characterized. Two effectors containing the conserved domain in AG4-JY were identified, and named as RsUEB1 and RsUEB2. Furthermore, the spray-induced gene silencing strategy was used to generate a dsRNA capable of silencing the conserved domain sequence of RsUEB1 and RsUEB2. This dsRNA can significantly reduce the expression of RsUEB1 and RsUEB2 and the pathogenicity of AG4-JY on foxtail millet, maize, rice and wheat. In conclusion, this study provides significant insights into the pathogenicity mechanisms of R. solani. The identification of the conserved domain and the successful use of dsRNA silencing of the gene containing the conserved domain will offer a new strategy for controlling sheath blight in cereal crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    假镰刀菌引起的镰刀菌冠腐病(FCR)对中国黄淮海地区的小麦生产构成了重大威胁。然而,假赤霉病的致病机制尚不清楚。Zn2Cys6转录因子,这是真菌独有的,在调节真菌发育中起关键作用,耐药性,致病性,和次生代谢。在这项研究中,我们介绍了Zn2Cys6转录因子F的功能表征。指定为Fp487。在F.seudograminearum,通过基因敲除和表型分析显示Fp487是菌丝体生长所必需的。与野生型CF14047相比,ΔFp487突变体的生长速率略有降低,但分生孢子发生显著降低,致病性和3-乙酰基-脱氧雪腐镰刀菌烯醇(3AcDON)的产生。此外,该突变体对氧化和细胞膜应激表现出更高的敏感性。此外,我们从Fp487基因体外合成dsRNA,通过喷雾诱导的基因沉默(SIGS),导致假赤霉病的生长速率及其在大麦叶片上的毒力降低。值得注意的是,本研究首次通过工程化大肠杆菌菌株HT115(DE3),并利用SIGS技术评估dsRNA对假赤霉病的毒力作用,从假赤霉病中诱导表达丰富的dsRNA。总之,我们的发现揭示了Fp487在调节致病性中的关键作用,应激反应,DON生产,和假赤霉病的分生孢子发生。此外,Fp487是FCR控制的潜在的基于RNAi的靶标。
    Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    菌核病是世界范围内最具破坏性的真菌疾病之一,因为它降低了许多经济上重要的作物的产量。病原体分泌的效应子在感染过程中起着至关重要的作用。然而,Shiraiana的关键影响因素,主要负责桑树菌核病的病原体(桑属物种。),仍然知之甚少。在这项研究中,我们鉴定并功能表征了Shiraiana中的效应子Cs02526,发现Cs02526可以诱导多种植物的细胞死亡。此外,Cs02526诱导的细胞死亡是由中枢免疫调节因子胆碱酯酶不敏感1相关受体激酶1(BAK1)介导的,依赖于67个氨基酸的片段。值得注意的是,Cs02526同源物广泛分布于半营养和坏死植物病原真菌中,但是同源物未能诱导植物细胞死亡。用重组Cs02526蛋白对植物进行预处理增强了对木薯和菌核病的抗性。此外,在用合成的dsRNA-Cs02526喷洒植物时,Shiraiana的致病性降低。总之,我们的研究结果强调了诱导细胞死亡的效应子Cs02526是未来植物病害生物防治策略的潜在靶点.
    Sclerotinia disease is one of the most devastating fungal diseases worldwide, as it reduces the yields of many economically important crops. Pathogen-secreted effectors play crucial roles in infection processes. However, key effectors of Ciboria shiraiana, the pathogen primarily responsible for sclerotinia disease in mulberry (Morus spp.), remain poorly understood. In this study, we identified and functionally characterized the effector Cs02526 in C. shiraiana and found that Cs02526 could induce cell deathin a variety of plants. Moreover, Cs02526-induced cell death was mediated by the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1), dependent on a 67-amino acid fragment. Notably, Cs02526 homologues were widely distributed in hemibiotrophic and necrotrophic phytopathogenic fungi, but the homologues failed to induce cell death in plants. Pre-treatment of plants with recombinant Cs02526 protein enhanced resistance against both C. shiraiana and Sclerotinia sclerotiorum. Furthermore, the pathogenicity of C. shiraiana was diminished upon spraying plants with synthetic dsRNA-Cs02526. In conclusion, our findings highlight the cell death-inducing effector Cs02526 as a potential target for future biological control strategies against plant diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.
    RNA沉默是真核生物基因表达调控的保守机制,在植物生长发育以及响应生物和非生物胁迫过程中发挥着非常重要的作用。跨界RNA沉默与种间RNA沉默为开发基于RNA沉默的作物病害防控体系提供了理论基础。本文概括了植物RNA沉默保守途径,归纳了RNA沉默在植物-病原互作研究中的代表性研究,阐述了基于RNA沉默开发的宿主诱导基因沉默、喷施诱导基因沉默和微生物诱导基因沉默技术的原理,以及应用研究现状,以期为开发基于RNA沉默的新型作物病害防控技术提供参考。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    菌核病菌和灰葡萄孢菌是两种密切相关的坏死性植物病原真菌,由于其广泛的寄主范围和持续的环境存在而受到广泛关注。使用双链RNA(dsRNA)抑制特定基因已证明在疾病管理中具有有希望的潜力。已经开发了各种RNA干扰(RNAi)策略并将其应用于疾病管理。包括使用dsRNA沉默特定基因,以及其他基于RNA的方法。这些策略在控制真菌疾病方面显示出希望,并且具有在植物保护中更广泛的应用潜力。这里,我们提出了一个方案,概述了制备dsRNA并直接喷雾以控制真菌疾病的技术。该协议为植物病害管理提供了一种实用有效的解决方案,有可能在病害管理中得到广泛应用。
    Sclerotinia sclerotiorum and Botrytis cinerea are two closely related necrotrophic plant pathogenic fungi that have garnered significant attention due to their broad host range and persistent environmental presence. The use of double-stranded RNA (dsRNA) to inhibit specific genes has demonstrated promising potential in disease management. Various RNA interference (RNAi) strategies have been developed and applied in disease management, including the use of dsRNA to silence specific genes, as well as other RNA-based approaches. These strategies show promise in controlling fungal diseases and have the potential for broader application in plant protection. Here, we present a protocol that outlines techniques for preparing dsRNA and spraying it directly to control fungal diseases. This protocol offers a practical and effective solution for managing plant diseases and has the potential to be widely applied in disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    菌核病,白霉菌感染的病原体,是一种世界性的真菌病原体,会导致许多经济上重要的农作物的产量损失。喷雾诱导的基因沉默(SIGS)最近已被证明是控制植物病害的一种有希望的替代方法。根据我们之前的研究,我们专注于开发SIGS方法,通过沉默硬核链球菌2(SsAgo2)来控制白霉菌,真菌小RNA途径的关键部分。我们比较了从5'到3'靶向SsAgo2的每个〜500-bp片段的结果,发现靶向SsAgo2的PIWI/RNaseH结构域最有效。使用体外或体内转录本的双链RNA(dsRNA)的外部应用抑制了白霉菌感染,以800ng/0.2cm2面积的速率确定,并通过RT-qPCR确认了来自感染叶组织的SsAgo2的下调。此外,负载有体外和体内转录的dsRNA片段的镁/铁-层状双氢氧化物(MgFe-LDH)纳米片显著降低了硬化S.体内产生的靶向SsAgo2转录物的PIWI/RNaseH结构域的dsRNA在与LDH纳米片组合时显示出减少硬核链球菌的白色霉菌症状的增加的功效。这种方法有望产生大规模的dsRNA,该dsRNA可以用作环境友好的杀真菌剂来管理该领域的白霉菌感染。
    Sclerotinia sclerotiorum, the causal agent of white mold infection, is a cosmopolitan fungal pathogen that causes major yield losses in many economically important crops. Spray-induced gene silencing has recently been shown to be a promising alternative method for controlling plant diseases. Based on our prior research, we focused on developing a spray-induced gene silencing approach to control white mold by silencing S. sclerotiorum argonaute 2 (SsAgo2), a crucial part of the fungal small RNA pathway. We compared the lesion size as a result of targeting each ∼500-bp segment of SsAgo2 from the 5\' to the 3\' end and found that targeting the PIWI/RNaseH domain of SsAgo2 is most effective. External application of double-stranded RNA (dsRNA)-suppressed white mold infection using either in vitro or in vivo transcripts was determined at the rate of 800 ng/0.2 cm2 area with a downregulation of SsAgo2 from infected leaf tissue confirmed by RT-qPCR. Furthermore, magnesium/iron-layered double hydroxide nanosheets loaded with in vitro- and in vivo-transcribed dsRNA segments significantly reduced the rate of S. sclerotiorum lesion expansion. In vivo-produced dsRNA targeting the PIWI/RNaseH domain of the SsAgo2 transcript showed increased efficacy in reducing the white mold symptoms of S. sclerotiorum when combined with layered double hydroxide nanosheets. This approach is promising to produce a large scale of dsRNA that can be deployed as an environmentally friendly fungicide to manage white mold infections in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着镰刀菌对化学杀菌剂的抗性持续增加,越来越需要开发新的疾病控制策略。为了发现可以作为新的疾病控制目标的必需基因,我们选择了在以前的研究中未能删除的重要候选基因.13个基因被证实是必需的,通过构建条件启动子替换突变体或通过采用规则聚集的间隔短回文重复序列(CRISPR)-CRISPR相关蛋白9(Cas9)介导的编辑策略。我们合成了靶向这些必需基因的双链RNA(dsRNA),并使用喷雾诱导的基因沉默(SIGS)方法分析了它们在植物中的保护作用。当在真菌接种之前将靶向Fg10360,Fg13150和Fg06123的dsRNA应用于分离的大麦叶时,病变大大减少。我们的发现为通过SIGS方法鉴定的必需基因作为控制真菌病的有效靶标提供了证据。
    As resistance to chemical fungicides continues to increase inFusarium graminearum, there is a growing need to develop novel disease control strategies. To discover essential genes that could serve as new disease control targets, we selected essential gene candidates that had failed to be deleted in previous studies. Thirteen genes were confirmed to be essential, either by constructing conditional promoter replacement mutants or by employing a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated editing strategy. We synthesized double-stranded RNAs (dsRNAs) targeting these essential genes and analyzed their protective effects in plants using a spray-induced gene silencing (SIGS) method. When dsRNAs targeting Fg10360, Fg13150, and Fg06123 were applied to detached barley leaves prior to fungal inoculation, disease lesions were greatly reduced. Our findings provide evidence of the potential of essential genes identified by a SIGS method to be effective targets for the control of fungal diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    致病疫霉,卵菌病原体,对马铃薯农业产生了毁灭性的影响,导致广泛使用化学杀菌剂来防止其爆发。喷雾双链RNA以通过RNA干扰(RNAi)途径抑制病原体的特定基因可以提供对环境友好的化学品的替代方案。然而,这种新方法将需要测试各种靶基因和应用策略。使用L4440主干,我们已经设计了两个质粒来表达dsRNA靶向的inf1和inf4基因已知有助于在不同阶段的疾病发展。在马铃薯外植体上测试由细菌产生的dsRNA,并且与水处理相比,在接种后5天显示病变的统计学显著减少。研究结果使我们认为我们的方法有望用于马铃薯晚疫病的控制。
    Phytophthora infestans, an Oomycete pathogen, has a devastating impact on potato agriculture, leading to the extensive use of chemical fungicides to prevent its outbreaks. Spraying double-stranded RNAs to suppress specific genes of the pathogen via the RNA interference (RNAi) pathway may provide an environmentally friendly alternative to chemicals. However, this novel approach will require various target genes and application strategies to be tested. Using the L4440 backbone, we have designed two plasmids to express dsRNA targeting inf1 and inf4 genes of P. infestans that are known to contribute to the disease development at different stages. The dsRNA produced by the bacteria was tested on potato explants and demonstrated a statistically significant reduction in lesions five days after inoculation compared to water treatment. The study results allow us to consider our approach to be promising for potato late blight control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞外囊泡(EV)是膜封闭的纳米级颗粒,可运输生物材料,例如RNA,蛋白质,和代谢物。在几乎所有的生命王国中,电动汽车都被发现是一种跨不同细胞和相互作用的生物体之间的细胞通讯形式。EV研究主要集中在哺乳动物中EV介导的生物体内运输,这导致了来自不同细胞类型的过多EV内容物的表征,具有独特而有影响力的生理效应。相比之下,对植物中EV介导的运输的研究集中在植物和相互作用的微生物之间的生物间相互作用。然而,植物和微生物EV的整体分子含量和功能仍然未知。最近对植物-病原体界面的研究表明,植物产生并分泌将小RNA转运到病原体细胞中以沉默毒力相关基因的EV。植物相互作用的微生物,如细菌和真菌也分泌运输蛋白质的电动汽车,代谢物,和潜在的RNA进入植物细胞以增强它们的毒力。这篇综述将集中在植物-病原体相互作用中EV介导的通信的最新进展,与哺乳动物EV能力的当前知识状态相比,并强调EV在跨王国RNA干扰中的作用。
    Extracellular vesicles (EVs) are membrane-enclosed nanometer-scale particles that transport biological materials such as RNAs, proteins, and metabolites. EVs have been discovered in nearly all kingdoms of life as a form of cellular communication across different cells and between interacting organisms. EV research has primarily focused on EV-mediated intra-organismal transport in mammals, which has led to the characterization of a plethora of EV contents from diverse cell types with distinct and impactful physiological effects. In contrast, research into EV-mediated transport in plants has focused on inter-organismal interactions between plants and interacting microbes. However, the overall molecular content and functions of plant and microbial EVs remain largely unknown. Recent studies into the plant-pathogen interface have demonstrated that plants produce and secrete EVs that transport small RNAs into pathogen cells to silence virulence-related genes. Plant-interacting microbes such as bacteria and fungi also secrete EVs which transport proteins, metabolites, and potentially RNAs into plant cells to enhance their virulence. This review will focus on recent advances in EV-mediated communications in plant-pathogen interactions compared to the current state of knowledge of mammalian EV capabilities and highlight the role of EVs in cross-kingdom RNA interference.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号