somatic instability

  • 文章类型: Journal Article
    短串联重复序列(STR)扩增与60多种遗传性疾病有关。这些扩张的大小和稳定性与疾病发作的严重程度和年龄相关。因此,能够准确地检测STR的绝对长度是重要的。目前的诊断化验包括费力的实验室实验,包括重复引物PCR和Southern印迹,这仍然不能精确确定非常长的重复扩展的确切长度。光学基因组作图(OGM)是传统细胞遗传学技术的一种经济有效且易于使用的替代方法,可以全面检测长度>500bp的染色体畸变和结构变异,包括插入,删除,重复,倒置,易位,和拷贝数变体。这里,我们为制备样品和执行OGM以及运行分析管道和使用特定重复扩增工作流程来确定扩增超过500bp的重复扩增的确切重复长度提供方法学指导.这些方案一起提供了分析任何重复扩增的长度和稳定性所需的所有细节,与预期的野生型等位基因的预期重复大小差异>500bp。©2024作者WileyPeriodicalsLLC出版的当前协议。基本方案1:基因组超高分子量DNA分离,标签,和染色基本方案2:使用BionanoSaphyr®System基本方案3:手动DeNovo组装工作流程基本方案4:本地引导组装工作流程基本方案5:聚焦脆性X工作流程基本方案6:分子距离脚本工作流程。
    Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System Basic Protocol 3: Manual De Novo Assembly workflow Basic Protocol 4: Local guided assembly workflow Basic Protocol 5: EnFocus Fragile X workflow Basic Protocol 6: Molecule distance script workflow.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亨廷顿病(HD)是由亨廷顿(HTT)基因的CAG扩增引起的显性遗传性神经退行性疾病,其特征是进行性运动,认知,和神经精神衰退。最近,除CAG重复外,新的遗传因素也与疾病的发病机理有关。大多数遗传修饰剂参与DNA修复途径,作为HTT基因中CAA中断丢失的原因,它们通过躯体扩张发挥主要影响。然而,这种机制可能不是HD发病机制的唯一驱动因素,和未来的研究是必要的,在这一领域。本综述的目的是剖析HD发病机制中遗传学的许多面孔,从顺式和反式作用的遗传修饰剂到RNA毒性,线粒体DNA突变,和表观遗传学因素。探索HD发病和进展的遗传修饰似乎不仅对阐明疾病的发病机制至关重要,还要提高疾病的预测和预防,开发疾病进展和对治疗反应的生物标志物,并认识到新的治疗机会。由于在其他重复扩张疾病中也描述了相同的遗传机制,它们的含义可能涵盖了这些疾病的全部范围。
    Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在不同基因的编码区中扩增的CAG重复是显性遗传脊髓小脑共济失调(SCA)的最常见原因。这些重复序列通过种系是不稳定的,更大的重复导致更早的发作。我们测量了在平均8.5年的时间间隔内从30个SCA1,50个SCA2,74个SCA3和30个SCA7个体收集的血液样本中的体细胞扩增,以及来自SCA1,SCA3和SCA7个体的死后组织和胎儿组织,以检查生命不同阶段的体细胞扩张。我们表明,随着时间的推移,血液中的躯体镶嵌性增加。SCA之间的扩增水平显着不同,并且与CAG重复长度相关。与那些还没有表现出症状的患者相比,表现出疾病的SCA7患者的扩张水平更高。与血液相比,来自SCA个体的脑组织具有更大的扩张。小脑在所研究的大脑区域中镶嵌性最低,随着ATXNs和DNA修复基因的高表达。这在皮质上是相反的,具有最高的镶嵌性和较低的ATXNs和DNA修复基因的表达。胎儿皮质没有表现出重复的不稳定性。这项研究表明,CAG重复在SCA个体的血液和大脑中的生命过程中越来越不稳定,具有基因和组织特异性模式。
    Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亨廷顿(HTT)CAG重复突变的体细胞不稳定性改变了亨廷顿氏病(HD)的发病年龄。了解不稳定性的机制和致病后果可能揭示治疗靶标。使用小池PCR,我们分析了表达全长人cDNAHTT转基因的OVT73绵羊模型中的CAG不稳定性。对五岁和十岁绵羊的分析表明,转基因(CAG)69重复序列在肝脏中非常稳定,纹状体,和其他脑组织。由于10岁的OVT73绵羊的细胞死亡和行为变化很小,我们的发现支持HTT扩展-CAG重复序列的不稳定性是HD进展所必需的.
    Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington\'s disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    重复扩增障碍(REDs)是由重复DNA序列扩增超过致病阈值引起的单基因疾病。REDs的共同特征是强烈的基因型-表型相关性,其中发病年龄(AAO)和疾病进展的主要决定因素是遗传重复序列的长度。在疾病基因携带者的一生中,重复的长度可以在体细胞中扩展,通过假设驱动疾病进展的体细胞扩张过程。尽管是单基因的,个体RED是表型可变的,探索是什么遗传修饰因素驱动了这种表型变异,阐明了这组疾病常见的关键致病机制。疾病表型受发现扩增的同源基因的影响,重复序列在编码区或非编码区中的位置以及重复序列中断的存在。人类基因数据,小鼠模型和体外模型通过重复序列的体细胞突变机制涉及DNA修复途径的疾病修饰作用。因此,在扩展重复的背景下发展对这些途径的理解可能导致未来的REDs疾病改善疗法。
    Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier\'s life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    重复扩增疾病是由特定的短串联重复序列扩增引起的一大组人类遗传疾病。在这些疾病中的一些中,体细胞的扩增影响发病年龄和疾病严重程度。然而,来自血液的DNA中的等位基因,常用的DNA来源,在人类和小鼠模型中,通常显示出比中枢神经系统中疾病相关细胞少得多的扩增。在这里,我们检查了来自脆性X相关疾病的小鼠模型的不同DNA来源的扩增程度,亨廷顿病,脊髓小脑共济失调1型和脊髓小脑共济失调2型。我们发现从粪便中分离的DNA比血液中的DNA更好地指示体细胞扩增。因为粪便是一种敏感的非侵入性DNA来源,它可以用于研究影响扩张风险的因素,或监测旨在减少临床前试验扩展的治疗方法,因为这将允许在同一只动物中纵向检查扩增,并允许比其他DNA来源更早地观察到扩增的显着变化。
    Repeat expansion diseases are a large group of human genetic disorders caused by expansion of a specific short tandem repeat tract. Expansion in somatic cells affects age of onset and disease severity in some of these disorders. However, alleles in DNA derived from blood, a commonly used source of DNA, usually show much less expansion than disease-relevant cells in the central nervous system in both humans and mouse models. Here we examined the extent of expansion in different DNA sources from mouse models of the fragile X-related disorders, Huntington\'s disease, spinocerebellar ataxia type 1 and spinocerebellar ataxia type 2. We found that DNA isolated from stool is a much better indicator of somatic expansion than DNA from blood. As stool is a sensitive and noninvasive source of DNA, it can be useful for studies of factors affecting the risk of expansion, or the monitoring of treatments aimed at reducing expansion in preclinical trials, as it would allow expansions to be examined longitudinally in the same animal and allow significant changes in expansion to be observed much earlier than is possible with other DNA sources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    There are more than 30 inherited human disorders connected with repeat expansion (myotonic dystrophy type I, Huntington\'s disease, Fragile X syndrome). Fragile X syndrome is the most common reason for inherited intellectual disability in the human population. The ways of the expansion development remain unclear. An important feature of expanded repeats is the ability to form stable alternative DNA secondary structures. There are hypotheses about the nature of repeat instability. It is proposed that these DNA secondary structures can block various stages of DNA metabolism processes, such as replication, repair and recombination and it is considered as the source of repeat instability. However, none of the hypotheses is fully confirmed or is the only valid one. Here, an experimental system for studying (CGG)n repeat expansion associated with transcription and TCR-NER is proposed. It is noteworthy that the aberrations of transcription are a poorly studied mechanism of (CGG)n instability. However, the proposed systems take into account the contribution of other processes of DNA metabolism and, therefore, the developed systems are universal and applicable for various studies. Transgenic cell lines carrying a repeat of normal or premutant length under the control of an inducible promoter were established and a method for repeat instability quantification was developed. One type of the cell lines contains an exogenous repeat integrated into the genome by the Sleeping Beauty transposon; in another cell line, the vector is maintained as an episome due to the SV40 origin of replication. These experimental systems can serve for finding the causes of instability and the development of therapeutic agents. In addition, a criterion was developed for the quantification of exogenous (CGG)n repeat instability in the transgenic cell lines\' genome.
    Существует ряд наследственных заболеваний человека, причиной которых является экспансия тандемных повторов. К ним относятся миотоническая дистрофия первого типа, болезнь Хантингтона, заболевания, ассоциированные с ломкой Х-хромосомой. Синдром ломкой Х-хромосомы – наиболее распространенная причина наследственной умственной отсталости у человека. На сегодняшний день причины развития экспансии остаются неисследованными. Важная особенность протяженных повторов – их способность формировать альтернативные вторичные структуры ДНК. Существуют гипотезы, объясняющие природу нестабильности повторов, однако все они предполагают возникновение устойчивых вторичных структур ДНК на различных этапах клеточного цикла. Источником нестабильности считаются нарушения в различных процессах метаболизма ДНК (репликация, репарация и рекомбинация), вызванные образованием вторичных структур. Однако ни одна из гипотез до конца не подтверждена и, видимо, не является единственно верной. Вероятно, в различных типах клеток и на определенных стадиях клеточного цикла источником нестабильности выступает множество процессов. В настоящей работе мы предлагаем экспериментальную систему для изучения вклада транскрипции и ассоциированной с ней репарации в нестабильность повтора (CGG)n, поскольку это наименее изученный механизм возникновения нестабильности. Однако предложенные модели могут учитывать вклад и других процессов метаболизма ДНК, например репликации, что делает полученные системы универсальными и применимыми в разных исследованиях. Нами были созданы трансгенные клеточные линии, несущие повтор нормальной и премутантной длины под тетрациклин-индуцируемым промотором. Один тип линий содержит плазмиду с экзогенным повтором, интегрированным в геном посредством транспозона Sleeping Beauty, в другой клеточной линии вектор поддерживается в виде эписомы благодаря ориджину репликации SV40. Такие трансгенные клеточные линии могут служить экспериментальной системой для поиска причин нестабильности и создания терапевтических средств. Кроме того, был разработан критерий для оценки нестабильности экзогенного (CGG)n повтора в геноме трансгенных клеточных линий, расчет которого не зависит от эффективности синтеза протяженных повторов.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近50种遗传性疾病是由异常长的重复DNA微卫星的遗传引起的。虽然最初认为遗传重复的大小是疾病发展的关键因素,很明显,在个体的整个一生中,这些重复序列的躯体不稳定性强烈地导致了疾病的发生和进展。重要的是,体细胞不稳定性通常在终末分化中观察到,有丝分裂后细胞,如神经元。为了解开非分裂细胞重复不稳定的机制,我们创建了一个实验系统来分析Friedreich的共济失调(GAA)n重复序列在静态酿酒酵母按时间顺序老化过程中的变异性。我们发现非分裂细胞中主要的重复介导的突变是包含部分的大规模缺失,或全部,重复区域和相邻区域。这些缺失是由错配修复(MMR)复合物MutSβ和MutLα以及DNA内切核酸酶Rad1介导的重复序列的断裂引起的,然后通过Exo1进行末端切除并通过非同源末端连接修复所得的双链断裂(DSB)。我们还观察到重复介导的基因转换是在时间老化过程中通过异位同源重组进行DSB修复的结果。重复扩展在时间老化期间也会累积,尤其是在没有MMR诱导的DSB的情况下。这些扩增取决于DNA聚合酶δ的持续合成能力,同时被Exo1和MutSβ抵消,牵涉到尼克修复。总之,这些发现表明(GAA)n重复不稳定的机制和类型在分裂和非分裂的细胞之间存在显著差异,提示终末分化体细胞中不同的重复介导突变可能影响Friedreich的共济失调发病机制。
    Nearly 50 hereditary diseases result from the inheritance of abnormally long repetitive DNA microsatellites. While it was originally believed that the size of inherited repeats is the key factor in disease development, it has become clear that somatic instability of these repeats throughout an individual\'s lifetime strongly contributes to disease onset and progression. Importantly, somatic instability is commonly observed in terminally differentiated, postmitotic cells, such as neurons. To unravel the mechanisms of repeat instability in nondividing cells, we created an experimental system to analyze the mutability of Friedreich\'s ataxia (GAA)n repeats during chronological aging of quiescent Saccharomyces cerevisiae Unexpectedly, we found that the predominant repeat-mediated mutation in nondividing cells is large-scale deletions encompassing parts, or the entirety, of the repeat and adjacent regions. These deletions are caused by breakage at the repeat mediated by mismatch repair (MMR) complexes MutSβ and MutLα and DNA endonuclease Rad1, followed by end-resection by Exo1 and repair of the resulting double-strand breaks (DSBs) via nonhomologous end joining. We also observed repeat-mediated gene conversions as a result of DSB repair via ectopic homologous recombination during chronological aging. Repeat expansions accrue during chronological aging as well-particularly in the absence of MMR-induced DSBs. These expansions depend on the processivity of DNA polymerase δ while being counteracted by Exo1 and MutSβ, implicating nick repair. Altogether, these findings show that the mechanisms and types of (GAA)n repeat instability differ dramatically between dividing and nondividing cells, suggesting that distinct repeat-mediated mutations in terminally differentiated somatic cells might influence Friedreich\'s ataxia pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Myotonic Dystrophy type 1 (DM1) is characterized by a high genetic and clinical variability. Determination of the genetic variability in DM1 might help to determine whether there is an association between CTG (Cytosine-Thymine-Guanine) expansion and the clinical manifestations of this condition. We studied the variability of the CTG expansion (progenitor, mode, and longest allele, respectively, and genetic instability) in three tissues (blood, muscle, and tissue) from eight patients with DM1. We also studied the association of genetic data with the patients\' clinical characteristics. Although genetic instability was confirmed in all the tissues that we studied, our results suggest that CTG expansion is larger in muscle and skin cells compared with peripheral blood leukocytes. While keeping in mind that more research is needed in larger cohorts, we have provided preliminary evidence suggesting that the estimated progenitor CTG size in muscle could be potentially used as an indicator of age of disease onset and muscle function impairment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号