single molecule

单分子
  • 文章类型: Journal Article
    DNA双链断裂(DSB)危害基因组完整性并危及细胞活力。主动转录的基因如果被破坏并且需要被抑制则是特别有害的。然而,抑制启动的速度有多快,以及它对染色体上相邻基因的影响有多大,仍然难以捉摸。我们采用了最近开发的,非常快速的CRISPR以精确的时间在特定的基因组位点产生DSB,可视化活细胞中的转录,并测量断裂位点附近的RNA聚合酶II(RNAPII)占有率。我们观察到单个DSB在几分钟内抑制受损基因的转录,这与损伤修复蛋白的募集相吻合。转录抑制从DSB沿着染色体双向传播数百千碱基,在这个过程中,蛋白酶体被诱发以去除RNAPII。我们的方法为测量单个DSB周围的快速动力学事件和阐明分子机制奠定了基础。
    A DNA double-strand break (DSB) jeopardizes genome integrity and endangers cell viability. Actively transcribed genes are particularly detrimental if broken and need to be repressed. However, it remains elusive how fast the repression is initiated and how far it influences the neighboring genes on the chromosome. We adopt a recently developed, very fast CRISPR to generate a DSB at a specific genomic locus with precise timing, visualize transcription in live cells, and measure the RNA polymerase II (RNAPII) occupancy near the broken site. We observe that a single DSB represses the transcription of the damaged gene in minutes, which coincides with the recruitment of a damage repair protein. Transcription repression propagates bi-directionally along the chromosome from the DSB for hundreds of kilobases, and proteasome is evoked to remove RNAPII in this process. Our method builds a foundation to measure the rapid kinetic events around a single DSB and elucidate the molecular mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种基于基于连接的识别和原位扩增的直接mRNA检测的强大方法,能够以单核苷酸和单分子分辨率对mRNA进行单细胞成像。归因于使用可以将挂锁探针与RNA作为靶模板连接的夹板R连接酶,这种方法可以在没有逆转录的情况下有效地检测mRNA。该方法能够对单细胞中的基因表达进行空间定位和相关性分析,这有助于我们阐明基因功能和调控机制。
    We present a powerful method for direct mRNA detection based on ligation-based recognition and in situ amplification, capable of single-cell imaging mRNA at single-nucleotide and single-molecule resolution. Attributed to the use of Splint R ligase that can ligate padlock probe with RNA as target template, this method can efficiently detect mRNA in the absence of reverse transcription. This method enables spatial localization and correlation analysis of gene expression in single cells, which helps us to elucidate gene function and regulatory mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铁蛋白,由24个亚基组成的球形蛋白质壳,作为一个有效的铁储存和释放系统通过其渠道。了解各种化学物质如何影响铁蛋白的结构行为对于揭示包括人类在内的生物体中铁相关疾病的起源至关重要。特别是,化学物质对铁蛋白动力学和铁释放的影响在单蛋白水平上几乎没有探索。这里,通过使用双纳米孔(DNH)结构的光学纳米镊子,我们研究了抗坏血酸(还原剂)和pH对个体铁蛋白构象动力学的影响。随着抗坏血酸浓度接近饱和,铁蛋白的动力学增加。在pH2.0时,铁蛋白表现出明显的结构波动,并最终逐步分解为碎片。这项工作证明了溶液中单个铁蛋白分子的分解途径和动力学。我们在其拆解途径中确定了四个关键片段,是22-mer,12-mer,四聚体,和二聚体亚基。此外,我们提供了铁蛋白协同分解的单分子证据。探究铁蛋白响应不同化学物质的结构变化对于理解它们在铁代谢中的作用具有重要意义。从而促进其相关疾病的医学治疗的进一步发展。
    Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin\'s dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin\'s conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin\'s structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    整合素在细胞迁移和粘附中将细胞外环境与肌动蛋白细胞骨架联系起来。细胞内外事件之间的快速协调至关重要。单分子荧光动力学表明,配体与弯曲闭合的整合素构象结合,在细胞表面占主导地位,在几毫秒内跟随两个一致的变化,腿延长和头套开口,得到高亲和力整合素构象。延伸封闭的整联蛋白构象不是中间体,但可以从延伸开放的构象直接进入并提供配体解离的途径。与配体相反,塔林,它将整联蛋白β亚基细胞质结构域连接到肌动蛋白细胞骨架,适度稳定,但不诱导延伸或开放。因此,整合素激活是由外向内的信令启动的,然后是内向外的信令。我们的结果进一步暗示,塔林蛋白的结合不足以进行由内而外的整合素激活,并且需要通过配体-整合素-塔林-肌动蛋白细胞骨架复合物的张力传递。
    Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin β-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用非弹性电子隧道光谱法在Cu(100)上的单分子水平上分析了三聚氰胺及其互变异构体的振动量子。表面互变异构化导致异构体的低能振动光谱明显不同,模式能量的变化和非弹性横截面的变化证明了这一点。空间分辨光谱学揭示了轨道节点平面上的最大信号强度,排除共振非弹性隧穿作为量子激发的潜在机制。将探针-分子分离降低到三聚氰胺氨基与尖端的Cu顶点原子之间形成化学键,会导致具有不同激发能量的猝灭振动光谱。密度泛函和电子传输计算再现了实验结果,并表明量子能量的偏移适用于内部分子弯曲模式。此外,模拟表明,键的形成代表了分子互变异构的有效方式。
    Vibrational quanta of melamine and its tautomer are analyzed at the single-molecule level on Cu(100) with inelastic electron tunneling spectroscopy. The on-surface tautomerization gives rise to markedly different low-energy vibrational spectra of the isomers, as evidenced by a shift in mode energies and a variation in inelastic cross sections. Spatially resolved spectroscopy reveals the maximum signal strength on an orbital nodal plane, excluding resonant inelastic tunneling as the mechanism underlying the quantum excitations. Decreasing the probe-molecule separation down to the formation of a chemical bond between the melamine amino group and the Cu apex atom of the tip leads to a quenched vibrational spectrum with different excitation energies. Density functional and electron transport calculations reproduce the experimental findings and show that the shift in the quantum energies applies to internal molecular bending modes. The simulations moreover suggest that the bond formation represents an efficient manner of tautomerizing the molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电化学发光(ECL)正迅速从分析方法发展成为光学显微镜。电化学触发器和光学读出的正交性将其与经典的显微镜和电化学技术区分开来,由于其接近零的背景,非凡的灵敏度,没有光漂白和光毒性。在这次审查中,我们总结了ECL成像技术的最新进展,通过增加生物测定的复杂性和多路复用,强调能够对生物实体进行成像和改善分析特性的原始配置。此外,绘制空间中的(电)化学反应性图提供了有关纳米材料的宝贵信息,并有助于破译ECL机制,以改善其在诊断和(电)催化中的性能。最后,我们强调了最近在单分子极限成像方面的成就,单光子或单一化学反应,以及当前将ECL成像进展转化为材料科学等其他领域的挑战,催化和生物学。
    Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    剪接位点识别对于定义转录组至关重要。利沙普兰和兰纳普拉姆等药物改变了U1snRNP识别特定5'剪接位点(5'SS)的方式,并促进U1snRNP在这些位置的结合和剪接。尽管5种SS调节剂具有治疗潜力,它们相互作用和snRNP底物的复杂性排除了定义5'SS调制机制的可能性。我们已经结合了整体动力学测量和共定位单分子光谱学(CoSMoS),确定了通过branaplam调节-1A凸起的5'SS的顺序结合机制。我们的机制建立了U1-C蛋白与U1snRNP可逆结合,并且branaplam仅在与-1A凸出的5'SS接合后才与U1snRNP/U1-C复合物结合。结合和非结合的明确顺序解释了可逆的branaplam相互作用如何导致长寿命U1snRNP/5'SS复合物的形成。Branaplam是一种核糖核蛋白,不是单独的RNA双链体,靶向药物的作用取决于5'SS识别的基本性质。
    Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how U1 snRNP recognizes particular 5\' splice sites (5\'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5\'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5\'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5\'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged a -1A bulged 5\'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5\'SS complexes. Branaplam is a ribonucleoprotein, not RNA duplex alone, targeting drug whose action depends on fundamental properties of 5\'SS recognition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    质膜(PM)相关脱落酸(ABA)信号转导是ABA信号的重要组成部分。已报道C2结构域ABA相关(CAR)蛋白在将ABA受体PYR1/PYL/RCAR(PYL)募集到PM中起关键作用。然而,CAR蛋白参与膜界定的ABA信号转导的分子细节仍不清楚.例如,此响应过程发生的位置,以及PYL以外的任何其他成员是否参与此信令过程。这里,所有拟南芥CAR成员的GUS标记材料用于全面可视化CAR家族基因的广泛表达模式。基于CAR1响应ABA的代表性,我们决定将其作为目标来研究CAR蛋白在PM相关ABA信号传导中的功能。单粒子示踪表明ABA影响CAR1的时空动力学。ABA的存在延长了CAR1在膜上的停留时间,并显示出更快的横向迁移率。令人惊讶的是,我们验证了CAR1可以在整体和单分子水平上直接招募对ABA1(HAB1)和SNF1相关蛋白激酶2.2(SnRK2.2)过敏的PM。此外,CAR1的PM定位被证明与膜微结构域有关。总的来说,我们的研究表明,CAR将ABA信号的三个主要成分招募到PM,以对ABA做出积极反应。本研究加深了我们对ABA信号转导的理解。
    Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单分子荧光原位杂交(smFISH)代表了用于临床组织样品中核酸生物标志物定量分析的有前途的方法。然而,在福尔马林固定石蜡包埋(FFPE)组织标本中使用基于smFISH的RNA成像时,低信号强度和高背景噪声是诊断病理学引起的并发症.此外,相关的复杂程序可能会产生不确定的结果和较差的图像质量。在这里,通过将分裂DNA探针的高特异性与ZnCdSe/ZnS量子点(QD)标记的高信号读出相结合,我们介绍QDsplit-FISH,高亮度smFISH技术,定量乳腺癌和肺鳞癌细胞系和临床FFPE组织样本中mRNA的表达。由于其高信噪比,QD分裂-FISH是一个快速,便宜,和定量FFPE肿瘤组织中mRNA表达的灵敏方法,使其适用于生物标志物成像和诊断病理学。
    Single-molecule fluorescence in situ hybridization (smFISH) represents a promising approach for the quantitative analysis of nucleic acid biomarkers in clinical tissue samples. However, low signal intensity and high background noise are complications that arise from diagnostic pathology when performed with smFISH-based RNA imaging in formalin-fixed paraffin-embedded (FFPE) tissue specimens. Moreover, the associated complex procedures can produce uncertain results and poor image quality. Herein, by combining the high specificity of split DNA probes with the high signal readout of ZnCdSe/ZnS quantum dot (QD) labeling, we introduce QD split-FISH, a high-brightness smFISH technology, to quantify the expression of mRNA in both cell lines and clinical FFPE tissue samples of breast cancer and lung squamous carcinoma. Owing to its high signal-to-noise ratio, QD split-FISH is a fast, inexpensive, and sensitive method for quantifying mRNA expression in FFPE tumor tissues, making it suitable for biomarker imaging and diagnostic pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    噬菌体T4基因32蛋白(gp32)是DNA复制所必需的单链DNA(ssDNA)结合蛋白。gp32通过其核心和N末端结构域之间的协同相互作用在ssDNA上形成稳定的蛋白质丝。gp32的C端结构域(CTD)被认为主要通过与复制体成分的直接相互作用来帮助协调DNA复制。然而,这些相互作用的确切机制尚不清楚,尚不清楚紧密结合的gp32细丝如何容易从ssDNA中取代,这是基因组加工所需的。这里,我们利用截短的gp32变体来证明CTD在调节gp32解离中的关键作用。使用光学镊子,我们探测了CTD截短的gp32,*I的结合和解离动力学,与8.1kntssDNA分子进行比较,并将这些测量值与全长gp32的测量值进行比较。*I-ssDNA螺旋丝随着蛋白质浓度的增加而逐渐解开,但仍然比全长的更稳定,野生型gp32。蛋白质过饱和,伴随着长丝退绕,促进全长gp32从整个ssDNA片段的快速解离。相比之下,*我主要从合作集群的末端缓慢解除绑定,无论蛋白质密度和DNA解链程度如何。我们的结果表明,CTD可能会限制ssDNA丝内蛋白质的相对扭曲角,因此在关键解链时,蛋白质间的协同相互作用将大大消失,便于及时删除gp32。我们提出了一个CTD介导的gp32位移模型,通过其细丝的内部重组,提供了在基因组加工过程中快速清除ssDNA的机制。
    Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein essential for DNA replication. gp32 forms stable protein filaments on ssDNA through cooperative interactions between its core and N-terminal domain. gp32\'s C-terminal domain (CTD) is believed to primarily help coordinate DNA replication via direct interactions with constituents of the replisome. However, the exact mechanisms of these interactions are not known, and it is unclear how tightly-bound gp32 filaments are readily displaced from ssDNA as required for genomic processing. Here, we utilized truncated gp32 variants to demonstrate a key role of the CTD in regulating gp32 dissociation. Using optical tweezers, we probed the binding and dissociation dynamics of CTD-truncated gp32, *I, to an 8.1 knt ssDNA molecule and compared these measurements with those for full-length gp32. The *I-ssDNA helical filament becomes progressively unwound with increased protein concentration but remains significantly more stable than that of full-length, wild-type gp32. Protein oversaturation, concomitant with filament unwinding, facilitates rapid dissociation of full-length gp32 from across the entire ssDNA segment. In contrast, *I primarily unbinds slowly from only the ends of the cooperative clusters, regardless of the protein density and degree of DNA unwinding. Our results suggest that the CTD may constrain the relative twist angle of proteins within the ssDNA filament such that upon critical unwinding the cooperative interprotein interactions largely vanish, facilitating prompt removal of gp32. We propose a model of CTD-mediated gp32 displacement via internal restructuring of its filament, providing a mechanism for rapid ssDNA clearing during genomic processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号