sea clutter

  • 文章类型: Journal Article
    一个完整的预测不同作战条件下海杂波属性的框架,由风速指定,风向,放牧角度,和两极分化,这是第一次提出。该框架由经验光谱组成,以表征不同风速下的海面剖面,蒙特卡罗方法生成海面剖面的实现,从单个海面实现计算归一化雷达横截面(NRCS)的物理光学方法,以及NRCS数据(海杂波)的回归,其经验概率密度函数(PDF)以一些统计参数为特征。采用JONSWAP和Hwang海浪谱来实现低风速和高风速下的海面剖面,分别。NRCS的概率密度函数用K和Weibull分布进行回归,每个都有两个参数。弱信号和强信号的异常区域中的概率密度函数用幂律分布进行回归,每个都以索引为特征。在不同的运行条件下,首次得出了K和Weibull分布的统计参数和幂律指数。该研究揭示了海杂波的简洁信息,可用于改善各种复杂海洋环境中的雷达性能。提出的框架可以用作设计未来测量任务的参考或指南,以增强现有的海浪谱经验模型,归一化雷达截面,等等。
    A complete framework of predicting the attributes of sea clutter under different operational conditions, specified by wind speed, wind direction, grazing angle, and polarization, is proposed for the first time. This framework is composed of empirical spectra to characterize sea-surface profiles under different wind speeds, the Monte Carlo method to generate realizations of sea-surface profiles, the physical-optics method to compute the normalized radar cross-sections (NRCSs) from individual sea-surface realizations, and regression of NRCS data (sea clutter) with an empirical probability density function (PDF) characterized by a few statistical parameters. JONSWAP and Hwang ocean-wave spectra are adopted to generate realizations of sea-surface profiles at low and high wind speeds, respectively. The probability density functions of NRCSs are regressed with K and Weibull distributions, each characterized by two parameters. The probability density functions in the outlier regions of weak and strong signals are regressed with a power-law distribution, each characterized by an index. The statistical parameters and power-law indices of the K and Weibull distributions are derived for the first time under different operational conditions. The study reveals succinct information of sea clutter that can be used to improve the radar performance in a wide variety of complicated ocean environments. The proposed framework can be used as a reference or guidelines for designing future measurement tasks to enhance the existing empirical models on ocean-wave spectra, normalized radar cross-sections, and so on.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    In recent years, super-resolution imaging techniques have been intensely introduced to enhance the azimuth resolution of real aperture scanning radar (RASR). However, there is a paucity of research on the subject of sea surface imaging with small incident angles for complex scenarios. This research endeavors to explore super-resolution imaging for sea surface monitoring, with a specific emphasis on grounded or shipborne platforms. To tackle the inescapable interference of sea clutter, it was segregated from the imaging objects and was modeled alongside I/Q channel noise within the maximum likelihood framework, thus mitigating clutter\'s impact. Simultaneously, for characterizing the non-stationary regions of the monitoring scene, we harnessed the Markov random field (MRF) model for its two-dimensional (2D) spatial representational capacity, augmented by a quadratic term to bolster outlier resilience. Subsequently, the maximum a posteriori (MAP) criterion was employed to unite the ML function with the statistical model regarding imaging scene. This hybrid model forms the core of our super-resolution methodology. Finally, a fast iterative threshold shrinkage method was applied to solve this objective function, yielding stable estimates of the monitored scene. Through the validation of simulation and real data experiments, the superiority of the proposed approach in recovering the monitoring scenes and clutter suppression has been verified.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着海洋雷达的快速发展,特别是那些在飞机上携带的,威胁越来越大的小型目标的检测已成为人们关注的主要领域之一。然而,通过在海洋环境中考虑来自飞机(例如无人机)的观察链,为了检测和跟踪低信号杂波比(SCR)目标,其中重要的一点是根据雷达输入参数分析雷达系统性能,大气传播介质,各种海杂波特征,和目标类型(RCS,速度,等。)在这种环境中。因此,有必要获得包括异常大气环境在内的整体路径损耗,气体衰减,云衰减,降雨衰减,和光束扫描损失。要考虑大气衰减,使用ITU-R模型。另一方面,由于尖峰和动态变化的特性,海杂波通常由长尾的统计分布和较宽的多普勒频谱来描述。传统的算法,如基于统计模型的算法,MTI,MTD处理通常是有限的,特别是低速和低RCS的目标。因此,海杂波,包括可用的经验和统计模型,被认为是估计和模拟雷达输入参数的影响,目标RCS,和海况对检测性能的影响。通过假设适当的观测几何方案来描述可用于相干处理的目标回波的多普勒频率。
    Along with the rapid development of marine radar, and particularly those carried on aircraft, the detection of small-sized targets which pose an increasing threat has become one of the main areas of interest. However, by considering an observation chain from an aircraft (such as a drone) in a maritime environment, with the aim of detecting and tracking of low signal-to-clutter ratio (SCR) targets, one of the important points would be the analysis of the radar system performance according to the radar input parameters, the atmospheric propagation medium, the various sea clutter characterization, and the type of targets (RCS, speed, etc.) in this environment. Therefore, it is necessary to obtain the overall path loss including the anomalous atmospheric environment, gas attenuation, clouds attenuation, rainfall attenuation, and beam scanning loss. To consider atmospheric attenuations, ITU-R models are used. On another side, because of spikes and dynamic variation properties, sea clutter is generally described by the statistical distribution with long tail and by its wider Doppler spectrum. Conventional algorithms such as those based on statistical models, MTI, and MTD processing are often limited, especially for the target of low speed and low RCS. Therefore, sea clutter, including empirical and statistical models available, is considered to estimate and simulate the impact of radar input parameters, targets RCS, and sea state on detection performance. The Doppler frequency of target echo which can be exploited for coherent processing is described by assuming an adequate scenario of observation geometry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    解决了复合高斯(CG)海杂波下扩展目标检测情况下的认知雷达自适应波形设计。基于海杂波的CG特征,纹理分量用于在每个闭环反馈期间表征杂波集合,其估计可用于下一个发射波形设计。所产生的波形设计问题是根据以下优化标准制定的:最大化海杂波抑制的输出信号与干扰加噪声比(SINR),并对波形自相关输出的旁瓣电平施加进一步的约束,以降低虚警率。数值结果表明了该方法的有效性。
    Adaptive waveform design for cognitive radar in the case of extended target detection under compound-Gaussian (CG) sea clutter is addressed. Based on the CG characteristics of sea clutter, the texture component is employed to characterize the clutter ensemble during each closed-loop feedback and its estimation can be used for the next transmitted waveform design. The resulting waveform design problem is formulated according to the following optimization criterion: maximization of the output signal-to-interference-plus-noise ratio (SINR) for sea clutter suppression, and imposing a further constraint on sidelobes level of the waveform autocorrelation outputs for decreasing the false alarm rate. Numerical results demonstrate the effectiveness of this approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Maritime moving target detection and tracking through particle filter based track-before-detect (PF-TBD) has significant practical value for airborne forward-looking scanning radar. However, villainous weather and surging of ocean waves make it extremely difficult to accurately obtain a statistical model for sea clutter. As the likelihood ratio calculation in PF-TBD is dependent on the distribution of the clutter, the performance of traditional distribution-based PF-TBD seriously declines. To resolve these difficulties, this paper proposes a new target detection and tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is independent from the prior knowledge of sea clutter. In the proposed method, the likelihood ratio calculation is implemented by first extracting the spectral residual of the input image to obtain the saliency map, and then constructing likelihood ratio through a binarization processing and information entropy calculation. Simulation results show that the proposed method had superior performance of maritime moving target detection and tracking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号