sea clutter

  • 文章类型: Journal Article
    一个完整的预测不同作战条件下海杂波属性的框架,由风速指定,风向,放牧角度,和两极分化,这是第一次提出。该框架由经验光谱组成,以表征不同风速下的海面剖面,蒙特卡罗方法生成海面剖面的实现,从单个海面实现计算归一化雷达横截面(NRCS)的物理光学方法,以及NRCS数据(海杂波)的回归,其经验概率密度函数(PDF)以一些统计参数为特征。采用JONSWAP和Hwang海浪谱来实现低风速和高风速下的海面剖面,分别。NRCS的概率密度函数用K和Weibull分布进行回归,每个都有两个参数。弱信号和强信号的异常区域中的概率密度函数用幂律分布进行回归,每个都以索引为特征。在不同的运行条件下,首次得出了K和Weibull分布的统计参数和幂律指数。该研究揭示了海杂波的简洁信息,可用于改善各种复杂海洋环境中的雷达性能。提出的框架可以用作设计未来测量任务的参考或指南,以增强现有的海浪谱经验模型,归一化雷达截面,等等。
    A complete framework of predicting the attributes of sea clutter under different operational conditions, specified by wind speed, wind direction, grazing angle, and polarization, is proposed for the first time. This framework is composed of empirical spectra to characterize sea-surface profiles under different wind speeds, the Monte Carlo method to generate realizations of sea-surface profiles, the physical-optics method to compute the normalized radar cross-sections (NRCSs) from individual sea-surface realizations, and regression of NRCS data (sea clutter) with an empirical probability density function (PDF) characterized by a few statistical parameters. JONSWAP and Hwang ocean-wave spectra are adopted to generate realizations of sea-surface profiles at low and high wind speeds, respectively. The probability density functions of NRCSs are regressed with K and Weibull distributions, each characterized by two parameters. The probability density functions in the outlier regions of weak and strong signals are regressed with a power-law distribution, each characterized by an index. The statistical parameters and power-law indices of the K and Weibull distributions are derived for the first time under different operational conditions. The study reveals succinct information of sea clutter that can be used to improve the radar performance in a wide variety of complicated ocean environments. The proposed framework can be used as a reference or guidelines for designing future measurement tasks to enhance the existing empirical models on ocean-wave spectra, normalized radar cross-sections, and so on.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    In recent years, super-resolution imaging techniques have been intensely introduced to enhance the azimuth resolution of real aperture scanning radar (RASR). However, there is a paucity of research on the subject of sea surface imaging with small incident angles for complex scenarios. This research endeavors to explore super-resolution imaging for sea surface monitoring, with a specific emphasis on grounded or shipborne platforms. To tackle the inescapable interference of sea clutter, it was segregated from the imaging objects and was modeled alongside I/Q channel noise within the maximum likelihood framework, thus mitigating clutter\'s impact. Simultaneously, for characterizing the non-stationary regions of the monitoring scene, we harnessed the Markov random field (MRF) model for its two-dimensional (2D) spatial representational capacity, augmented by a quadratic term to bolster outlier resilience. Subsequently, the maximum a posteriori (MAP) criterion was employed to unite the ML function with the statistical model regarding imaging scene. This hybrid model forms the core of our super-resolution methodology. Finally, a fast iterative threshold shrinkage method was applied to solve this objective function, yielding stable estimates of the monitored scene. Through the validation of simulation and real data experiments, the superiority of the proposed approach in recovering the monitoring scenes and clutter suppression has been verified.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    解决了复合高斯(CG)海杂波下扩展目标检测情况下的认知雷达自适应波形设计。基于海杂波的CG特征,纹理分量用于在每个闭环反馈期间表征杂波集合,其估计可用于下一个发射波形设计。所产生的波形设计问题是根据以下优化标准制定的:最大化海杂波抑制的输出信号与干扰加噪声比(SINR),并对波形自相关输出的旁瓣电平施加进一步的约束,以降低虚警率。数值结果表明了该方法的有效性。
    Adaptive waveform design for cognitive radar in the case of extended target detection under compound-Gaussian (CG) sea clutter is addressed. Based on the CG characteristics of sea clutter, the texture component is employed to characterize the clutter ensemble during each closed-loop feedback and its estimation can be used for the next transmitted waveform design. The resulting waveform design problem is formulated according to the following optimization criterion: maximization of the output signal-to-interference-plus-noise ratio (SINR) for sea clutter suppression, and imposing a further constraint on sidelobes level of the waveform autocorrelation outputs for decreasing the false alarm rate. Numerical results demonstrate the effectiveness of this approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Maritime moving target detection and tracking through particle filter based track-before-detect (PF-TBD) has significant practical value for airborne forward-looking scanning radar. However, villainous weather and surging of ocean waves make it extremely difficult to accurately obtain a statistical model for sea clutter. As the likelihood ratio calculation in PF-TBD is dependent on the distribution of the clutter, the performance of traditional distribution-based PF-TBD seriously declines. To resolve these difficulties, this paper proposes a new target detection and tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is independent from the prior knowledge of sea clutter. In the proposed method, the likelihood ratio calculation is implemented by first extracting the spectral residual of the input image to obtain the saliency map, and then constructing likelihood ratio through a binarization processing and information entropy calculation. Simulation results show that the proposed method had superior performance of maritime moving target detection and tracking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号