polysaccharide utilization

多糖利用率
  • 文章类型: Journal Article
    人类肠道微生物群能够降解否则不可消化的多糖,主要是通过拟杆菌的活动。多糖对拟杆菌的摄取受TonB依赖性转运蛋白(TBDT)控制,其运输由由TonB蛋白组成的内膜复合物激发,ExbB,和ExbD。拟杆菌(B.theta)编码11个TonB同源物,这些同源物被预测能够接触TBDT以促进运输。然而,尚不清楚哪些TonBs对于多糖摄取是重要的。使用11个预测的tonB基因都缺失的菌株,我们表明,TonB4(BT2059)对淀粉的适当生长很重要,但不是必需的。在没有TonB4的情况下,我们观察到B.theta膜中TonB6(BT2762)的丰度增加,表明这些TonB蛋白的功能冗余。单缺失菌株在果胶半乳聚糖上的生长,硫酸软骨素,阿拉伯,和levan表明TonB蛋白的类似功能冗余。在其他拟杆菌属物种中搜索高度同源的蛋白质以及在脆弱拟杆菌属中的最新工作表明,TonB4被广泛保存,并且可能在多糖摄取中起共同作用。然而,类似于TonB6的蛋白质仅在B.theta和密切相关的物种中发现,这表明TonB4和TonB6的功能冗余可能在拟杆菌中受到限制。这项研究扩展了我们对B.theta中多糖利用所需的蛋白质网络的理解,并强调了跨拟杆菌属物种的TonB复合物的差异。重要的是人类肠道微生物群,包括拟杆菌,是降解否则不可消化的多糖所必需的。肠道微生物群使用多糖作为能量来源,和发酵产物如短链脂肪酸对人体宿主有益。多糖的这种使用取决于TonB蛋白与多糖特异性TonB依赖性转运蛋白的正确配对;然而,这些蛋白质复合物的形成知之甚少。在这项研究中,我们检查了11个预测的TonB同源物在多糖摄取中的作用。我们发现两种蛋白质,TonB4和TonB6可以是功能冗余的。这可以允许开发靶向仅含有TonB4同源物的拟杆菌物种的药物,对编码冗余TonB6的物种具有有限的影响。
    The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解人类肠道微生物群的成员如何优先考虑营养资源是更大努力的组成部分,以破译定义健康和疾病中微生物群落稳健性和弹性的机制。这些知识是开发微生物群定向疗法的基础。为了模拟细菌如何优先考虑肠道中的聚糖,无菌小鼠定植了13种人类肠道细菌菌株,包括七个解糖杆菌科物种。给动物喂食补充有豌豆纤维的西方饮食。社区集会之后,基于CRISPR的诱导型系统被用于选择性地和暂时地将拟杆菌的绝对丰度降低10至60倍。每次击倒都会导致特定的,其他拟杆菌科的丰度可重复增加,以及其与聚糖利用有关的基因表达的动态改变。这些“替代消费者”的出现与社区糖解活性的保存有关。使用可诱导系统进行体外CRISPR碱基编辑,我们中断了转运蛋白的翻译,这些转运蛋白对利用食粮多糖至关重要,B.cellulosilicus敲低反应分类单元。对所得P.vulgatus突变体的体外和体内测试使我们能够进一步表征与其敲低后适应性增加相关的机制。原则上,所描述的方法可应用于研究一系列营养素的利用,并应用于旨在开发精确控制微生物群落的治疗策略的临床前努力.
    Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these \"alternate consumers\" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖苷水解酶(GHs)是许多环境必需的碳水化合物活性酶(例如,碳循环)和生物技术(例如,生物燃料)过程。细菌对碳水化合物的完全处理需要许多酶协同作用。这里,我调查了406,337个GH基因的聚集或分散分布及其与15,640个完全测序的细菌基因组中鉴定的转运蛋白基因的关联。不同的细菌谱系显示出聚集或分散的GH基因的保守水平,但总的来说,GH基因聚类通常高于随机基因组。在具有高度聚集的GH基因的谱系中(例如,拟杆菌,拟杆菌),成簇的基因具有相同的取向。这些共向基因簇可能通过允许转录通读和促进基因共表达,至少在某些情况下,形成操纵子。在几个分类单元中,GH基因与不同类型的转运蛋白基因聚集在一起。在选定的谱系中,转运蛋白基因的类型和所谓的GH:TR基因簇的分布是保守的。全球范围内,GH基因与转运蛋白基因的系统发育保守聚类突出了碳水化合物加工在细菌谱系中的中心功能。此外,在具有最明确GH基因的细菌中,碳水化合物加工的基因组适应也反映了测序菌株的广泛环境起源(例如,土壤和哺乳动物的肠道),表明进化史和环境的结合选择了支持细菌基因组中碳水化合物加工的GH基因的特定顺化组织。
    Glycoside hydrolases (GHs) are carbohydrate-active enzymes essential for many environmental (e.g., carbon cycling) and biotechnological (e.g., biofuels) processes. The complete processing of carbohydrates by bacteria requires many enzymes acting synergistically. Here, I investigated the clustered or scattered distribution of 406,337 GH-genes and their association with transporter genes identified in 15,640 completely sequenced bacterial genomes. Different bacterial lineages displayed conserved levels of clustered or scattered GH-genes, but overall, the GH-genes clustering was generally higher than in randomized genomes. In lineages with highly clustered GH-genes (e.g., Bacteroides, Paenibacillus), clustered genes shared the same orientation. These codirectional gene clusters potentially facilitate the genes\' co-expression by allowing transcriptional read-through and, at least in some cases, forming operons. In several taxa, the GH-genes clustered with distinct types of transporter genes. The type of transporter genes and the distribution of the so-called GH:TR-genes clusters were conserved in selected lineages. Globally, the phylogenetically conserved clustering of the GH-genes with transporter genes highlights the central function of carbohydrate processing across bacterial lineages. In addition, in bacteria with the most identified GH-genes, the genomic adaptations for carbohydrate processing also mirrored the broad environmental origin of the sequenced strains (e.g., soil and mammal gut) suggesting that a combination of evolutionary history and the environment selects for the specific supragenic organization of the GH-genes supporting the carbohydrate processing in bacterial genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    商业提供的马铃薯半乳聚糖(PG)在各种生物活性研究中被广泛用作模型多糖。然而,使用该半乳聚糖的结果并不总是与所述组合物一致。这里,我们通过分馏这种商业PG来评估其组成,并纯化其主要成分:PG-A,重均分子量为430、93和11.3kDa的PG-B和PG-Cp,分别。PG-Cp由游离的β-1,4-半乳聚糖链组成,而PG-A和PG-B是I型鼠李糖半乳糖醛类,具有多达80个Gal残基的长β-1,4-半乳聚糖侧链和0至3个Gal残基的短β-1,4-半乳聚糖侧链,显示“草坪中的树木”模式。就半乳糖凝集素-3结合和肠道细菌生长测定而言,这些多糖的结构与其活性密切相关。我们的研究澄清了与商业PG相关的混乱,纯化的馏分在生物活性研究中用作更好的模型多糖。
    Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free β-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long β-1,4-galactan side chains of up to 80 Gal residues and short β-1,4-galactan side chains of 0 to 3 Gal residues that display a \"trees in lawn\" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    主要以大型藻类为食的海洋草食性鱼类,比如那些来自Kyphosus属的,对于维持热带珊瑚礁上的珊瑚健康和丰富至关重要。这里,来自三个同胞的肠室特异性样品的深宏基因组测序和组装,巨藻夏威夷金phosid物种已用于将宿主肠道微生物类群与预测的蛋白质功能能力联系起来,这可能有助于有效的巨藻消化。细菌群落组成,藻类膳食来源,平行分析了16个跨越野生鱼类中肠和后肠消化区域的宏基因组的预测酶功能。组装重叠群上的扩展碳水化合物(CAZy)和硫酸酯酶(SulfAtlas)消化酶家族的基因共定位模式用于鉴定可能的多糖利用基因座关联,并可视化靶向复合硫酸化多糖的细胞外出口蛋白质的潜在合作网络。这些对草食性海鱼的肠道微生物群及其功能能力的见解提高了我们对消化复杂巨藻硫酸多糖所涉及的酶和微生物的理解。重要性这项工作将特定的未培养的细菌分类群与海洋脊椎动物宿主缺乏的独特多糖消化能力联系起来,为解构复杂硫酸多糖的过程以及微生物获得扩大的巨藻利用基因功能的潜在进化机制提供了新的见解。已鉴定出数千个用于多糖利用的新的海洋特异性候选酶序列。这些数据为未来研究抑制珊瑚礁巨藻过度生长提供了基础资源,鱼类宿主生理学,在陆地和水产养殖动物饲料中使用大型藻类原料,以及将大型藻类生物质生物转化为增值商业燃料和化学产品。
    Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠道微生物群对人类健康和疾病产生强大的影响。肠道微生物群落和它们觅食的聚糖的巨大复杂性阻碍了阐明微生物群影响的潜在机制。尽管有丰富的基因组和宏基因组测序信息,仍然缺乏信息的表型测量。PudloNA,UrsK,克劳福德R,皮拉尼A,etal.(mSystems7:e00947-21,2022,https://doi.org/10.1128/msystems.00947-21)通过引入可扩展的测定法来测量优势菌群中特定的碳水化合物利用率来解码这种复杂性。结果揭示了聚糖利用的镶嵌结构,遗传和功能,支撑人胃肠道中的生态位结构。本评论强调了他们的发现与该领域对竞争的日益赞赏有关的重要性,合作,和水平基因转移塑造高度复杂的微生物群落。
    The gut microbiome exerts a powerful influence on human health and disease. Elucidating the underlying mechanisms of the microbiota\'s influence is hindered by the immense complexity of the gut microbial community and the glycans they forage. Despite a wealth of genomic and metagenomic sequencing information, there remains a lack of informative phenotypic measurements. Pudlo NA, Urs K, Crawford R, Pirani A, et al. (mSystems 7: e00947-21, 2022, https://doi.org/10.1128/msystems.00947-21) decode this complexity by introducing a scalable assay to measure specific carbohydrate utilization in the dominant microbiota phylum Bacteroidetes. The results reveal a mosaic structure of glycan utilization, both genetic and functional, underpinning niche construction in the human gastrointestinal tract. This Commentary highlights the significance of their findings in connection to the field\'s growing appreciation for competition, cooperation, and horizontal gene transfer in shaping the highly complex microbial community.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管细菌用来适应特定环境条件的策略被广泛报道,很少有研究探讨具有世界性分布的微生物如何在不同的生态系统中生存。Exiguobacterium是一种多才多艺的属,其成员常见于各种栖息地。为了更好地理解外生细菌普遍性的潜在机制,我们从不同的环境中收集了105株菌株,并进行了大规模的代谢和适应能力测试.我们发现,大多数Exiguobacterium成员有能力在很宽的温度范围内生存,盐度,和pH。根据系统发育和平均核苷酸同一性分析,我们确定了27个推定物种,并对两个遗传组进行了分类:I组和II组。比较基因组分析显示,Exiguobacterium成员利用各种复杂的多糖和蛋白质来支持在不同环境中的生存,并且为此目的还使用了许多伴奏蛋白和转运蛋白。我们观察到,第I组物种可以在更多样化的陆地环境中找到,并且比第II组物种具有更大的基因组大小。我们的分析显示,转运蛋白家族的扩展推动了I组菌株的基因组扩展,我们确定了25个运输家庭,其中许多涉及重要底物的运输和对环境胁迫的抗性,并且在I组菌株中富集。这项研究为细菌属的世界性分布的总体一般遗传基础以及外细菌的进化和适应性策略提供了重要见解。重要特征的广泛分布特征使其成为研究可以在多个栖息地生存的细菌的适应性策略的有价值的模型。在这项研究中,我们发现,Exiguobacterium属的成员具有世界性分布,并具有广泛的适应性,使它们能够在各种环境中生存。Exiguobacterium成员共有的能力,例如它们多样化的多糖利用方式和环境胁迫抗性,为其世界性分布提供了重要依据。此外,转运体家族的选择性扩增一直是外生细菌基因组进化的主要驱动力。我们的发现改善了我们对世界性细菌的适应性和进化机制以及可以促进生态位适应的重要基因组特征的理解。
    Although the strategies used by bacteria to adapt to specific environmental conditions are widely reported, fewer studies have addressed how microbes with a cosmopolitan distribution can survive in diverse ecosystems. Exiguobacterium is a versatile genus whose members are commonly found in various habitats. To better understand the mechanisms underlying the universality of Exiguobacterium, we collected 105 strains from diverse environments and performed large-scale metabolic and adaptive ability tests. We found that most Exiguobacterium members have the capacity to survive under wide ranges of temperature, salinity, and pH. According to phylogenetic and average nucleotide identity analyses, we identified 27 putative species and classified two genetic groups: groups I and II. Comparative genomic analysis revealed that the Exiguobacterium members utilize a variety of complex polysaccharides and proteins to support survival in diverse environments and also employ a number of chaperonins and transporters for this purpose. We observed that the group I species can be found in more diverse terrestrial environments and have a larger genome size than the group II species. Our analyses revealed that the expansion of transporter families drove genomic expansion in group I strains, and we identified 25 transporter families, many of which are involved in the transport of important substrates and resistance to environmental stresses and are enriched in group I strains. This study provides important insights into both the overall general genetic basis for the cosmopolitan distribution of a bacterial genus and the evolutionary and adaptive strategies of Exiguobacterium. IMPORTANCE The wide distribution characteristics of Exiguobacterium make it a valuable model for studying the adaptive strategies of bacteria that can survive in multiple habitats. In this study, we reveal that members of the Exiguobacterium genus have a cosmopolitan distribution and share an extensive adaptability that enables them to survive in various environments. The capacities shared by Exiguobacterium members, such as their diverse means of polysaccharide utilization and environmental-stress resistance, provide an important basis for their cosmopolitan distribution. Furthermore, the selective expansion of transporter families has been a main driving force for genomic evolution in Exiguobacterium. Our findings improve our understanding of the adaptive and evolutionary mechanisms of cosmopolitan bacteria and the vital genomic traits that can facilitate niche adaptation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于我们对组成细菌的理解不足,因此利用微生物区来获得有益的结果受到限制。因为他们大多数基因的功能都是未知的。这里,我们测量了48个碳源上的肠道共生拟杆菌的条形码转座子突变文库的生长,在56种应激诱导化合物的存在下,以及在侏儒小鼠的单一定殖过程中。我们仅在一种或几种条件下鉴定出516个具有特定表型的基因,能够对基因功能进行明智的预测。例如,我们确定了一种对I型鼠李糖半乳糖醛酸生长重要的糖苷水解酶,用于糖胺聚糖利用的DUF4861蛋白,一种用于二糖利用的3-酮-葡萄糖苷水解酶,以及专门针对胆盐耐受性的三方多药耐药系统。此外,我们表明,B.thetaiotaomicron使用替代酶来合成基于铵可用性的含氮代谢前体,并且这些酶以饮食依赖性方式在体内差异使用。
    Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Evaluation of bacterial succession with cultivation-dependent strategies during a spring phytoplankton bloom in the North Sea led to the isolation of 41 strains that affiliated with the genus Winogradskyella. Fifteen of the strains were selected for a taxonomic study after discarding clonal cultures. A thorough phylogenetic, genomic and phenotypic analysis of the isolates indicated that they represented eight new species that coexisted in North Sea waters. Molecular data revealed the existence of an as yet uncultivated novel species recurrently binned from the North Sea metagenomes. The metagenome-assembled genomes (MAGs) of this new Winogradskyella were used to classify it as a new Candidatus species. This study represented a new example of the use of the tandem approach of whole cell mass spectrometry linked to 16S rRNA gene sequencing in order to facilitate the discovery of new taxa by high-throughput cultivation, which increases the probability of finding more than a single isolate for new species. In addition, we demonstrated the reasons for classifying MAGs representing recurrently retrieved heterotrophic species that evade cultivation even after an important high-throughput effort. The taxonomic study resulted in the classification of eight new species and one new Candidatus species of the genus Winogradskyella for which we propose the names W. schleiferi sp. nov., W. costae sp. nov., W. helgolandensis sp. nov., W. vidalii sp. nov., W. forsetii sp. nov., W. ludwigii sp. nov., W. ursingii sp. nov., W. wichelsiae sp. nov., and Candidatus \"W. atlantica\" sp. nov.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    纳米的古细菌,他们的小基因组和有限的代谢能力,已知与其他微生物有关,从而补偿自己的营养缺陷。这些小型但无处不在的生物在与haloarchea共享的高盐栖息地中茁壮成长。这里,我们揭示了纳米卤代古菌-卤代古菌协会的遗传和生理性质,两种微生物都是从太阳盐池中获得的,并在体外可重复地培养在一起。纳米卤代古菌念珠菌LC1Nh是一种耐氧物质,糖发酵厌氧菌,缺乏关键的合成代谢机制和呼吸复合物。发现纳米卤代古菌细胞与几丁质分解的卤代古菌Halomicrobiumsp。LC1Hm.我们的实验表明,这种卤代古菌可以在细胞外水解几丁质(产生单糖N-乙酰葡糖胺),利用这种β-葡聚糖来获得生长所需的碳和能量。然而,LC1Hm不能代谢糖原或淀粉(α-葡聚糖)或其他测试的多糖。值得注意的是,纳米卤古菌将糖原和淀粉水解为葡萄糖的能力使Halomicrobiumsp。LC1Hm在没有几丁质的情况下。这些发现表明,纳米卤代古菌-卤代古菌协会既是共生的又是共生的;在这种情况下,每一种微生物依赖于其伙伴降解不同多糖的能力。这表明,反过来,其他纳米级古细菌也可能对它们的宿主有益。鉴于碳底物的可用性可以在空间和暂时变化,Halomicroum对CaNanohalobium定植的敏感性可以解释为最大化宿主长期适应性的策略。
    Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon\'s ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner\'s ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号