plasmonics

等离子体激元
  • 文章类型: Journal Article
    在光学神经接口领域,等离子体共振与神经细胞相互作用的探索在神经科学界引起了越来越多的关注。在纳米尺寸的金属纳米结构中,光与传导电子的相互作用可以引起等离子体共振,展示了一个通用的能力来感知和触发细胞事件。我们描述了在光学神经植入物的尖端上产生传播或局部表面等离子体激元的观点,扩大了神经科学实验室探索等离子体神经界面潜力的可能性。
    Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这份简短的报告中,我们提出了激光诱导击穿光谱(LIBS)的证据,氘(D)在3:1氨基甲酸乙酯二甲基丙烯酸酯(UDMA)和三甘醇二甲基丙烯酸酯(TEGDMA)聚合物掺杂共振金纳米棒,强烈诱导,40fs激光脉冲。原位记录的LIBS光谱显示,在所选事件中,聚合物样品中的D/(2D+H)增加至4-8%。发现and变的程度随激光脉冲能量(强度)在2至25mJ(最高3×1017W/cm2)之间线性增加。观察到的效果仅归因于由于金纳米颗粒上的激发的局部表面等离子体激元引起的场增强效果。
    In this brief report, we present laser induced breakdown spectroscopy (LIBS) evidence of deuterium (D) production in a 3:1 urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) polymer doped with resonant gold nanorods, induced by intense, 40 fs laser pulses. The in situ recorded LIBS spectra revealed that the D/(2D + H) increased to 4-8% in the polymer samples in selected events. The extent of transmutation was found to linearly increase with the laser pulse energy (intensity) between 2 and 25 mJ (up to 3 × 1017W/cm2). The observed effect is attributed only to the field enhancing effects due to excited localized surface plasmons on the gold nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光谱学技术是表征二维(2D)量子材料的核心。然而,原子级薄样品的体积减小通常导致横截面太低,以至于常规光学方法无法产生可测量的信号。在这项工作中,我们开发了一种基于模版光刻技术的方案,以制造用于拉曼和光致发光光谱的可转移光学增强纳米结构。配备了这种新的纳米加工技术,我们设计和制造等离子体纳米结构来定制少层材料与光的相互作用。我们证明了2D半导体和磁体的超薄薄片的拉曼强度的数量级增加,以及WSe2/MoS2异质结构中淬火激子的Purcell选择性增强。我们提供的证据表明,该方法对空气敏感材料特别有效,因为转移可以在原位进行。制造技术可以被推广以实现功能光子器件的高度灵活性。
    Optical spectroscopy techniques are central for the characterization of two-dimensional (2D) quantum materials. However, the reduced volume of atomically thin samples often results in a cross section that is far too low for conventional optical methods to produce measurable signals. In this work, we developed a scheme based on the stencil lithography technique to fabricate transferable optical enhancement nanostructures for Raman and photoluminescence spectroscopy. Equipped with this new nanofabrication technique, we designed and fabricated plasmonic nanostructures to tailor the interaction of few-layer materials with light. We demonstrate orders-of-magnitude increase in the Raman intensity of ultrathin flakes of 2D semiconductors and magnets as well as selective Purcell enhancement of quenched excitons in WSe2/MoS2 heterostructures. We provide evidence that the method is particularly effective for air-sensitive materials, as the transfer can be performed in situ. The fabrication technique can be generalized to enable a high degree of flexibility for functional photonic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传统的磁光子纳米结构通常在窄波长和入射角范围内起作用。其中观察到共振并放大了磁光(MO)效应。扩展这些操作范围可以允许改进的应用,包括在(生物)传感设备。在这项研究中,我们描述了一种混合磁等离子体波导光栅(HMPWG),其中等离子体共振和波导模式的耦合导致增强的MO效应和灵敏度,根据全波电磁模拟。高横向磁光克尔效应(TMOKE)信号观察的波长和角度的全范围研究,即,对于θinc≥1°和500nm≤λ≤850nm。作为概念验证,我们验证了使用HMPWG纳米结构与水溶液作为覆盖层,可以获得S=166°/RIU和S=230nm/RIU的折射率单位(RIU)变化的灵敏度角度和波长询问模式,分别。与传统的磁等离子体光栅相比,只能激发等离子体共振,我们证明,HMPWG纳米结构可以进一步优化,不仅达到高灵敏度,而且在传感和生物传感的高分辨率。
    Conventional magnetophotonic nanostructures typically function within narrow wavelength and incident angle ranges, where resonance is observed and magneto-optical (MO) effects are amplified. Expanding these operational ranges may allow for improved applications, including in (bio)sensing devices. In this study, we describe a hybrid magnetoplasmonic waveguide grating (HMPWG) in which the coupling of plasmonic resonances and waveguide modes leads to enhanced MO effects and sensitivity, according to full-wave electromagnetic simulations. High transverse magneto-optical Kerr effect (TMOKE) signals were observed for the full range of wavelengths and angles investigated, i.e., for θinc ≥ 1° and 500 nm ≤ λ ≤ 850 nm. As a proof-of-concept we verified that using the HMPWG nanostructure with an aqueous solution as superstrate one may obtain a sensitivity in variation of the refractive index unit (RIU) of S = 166°/RIU and S = 230 nm/RIU in angle and wavelength interrogation modes, respectively. Upon comparing with conventional magnetoplasmonic gratings, which only enable excitation of plasmonic resonances, we demonstrate that HMPWG nanostructures can be further optimized to reach not only high sensitivity but also high resolution in sensing and biosensing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    扫描显微镜方法对于纳米电子学的发展至关重要。然而,这些技术中的垂直纳米探针受到限制,例如尖端-样品界面的脆弱性,复杂的仪器,以及在几种情况下缺乏operando功能。这里,我们介绍了扫描等离子体增强显微镜(SPEM),并证明了其在MoS2和WSe2纳米片的能力。SPEM将纳米粒子镜上(NPoM)配置与便携式导电悬臂相结合,实现同时的光学和电学表征。这将其与不能同时提供两种表征的其他当前技术区分开。它提供了600nm的具有竞争力的光学分辨率,光学信号的局部增强高达20,000倍。半径为15nm的单个金纳米粒子形成原始的,无损范德华接触,这允许在纳米级观察MoS2的意外p型行为。SPEM通过消除对广泛的统计分析的需要并提供任何选定区域的出色的纳米级映射分辨率来重建NPoM方法。它在结合精确的光学和电学表征方面超越了其他扫描技术,交互式简单,尖端耐久性,和再现性,将其定位为推进纳米电子学的最佳工具。
    Scanning microscopy methods are crucial for the advancement of nanoelectronics. However, the vertical nanoprobes in such techniques suffer limitations such as the fragility at the tip-sample interface, complex instrumentation, and the lack of in operando functionality in several cases. Here, we introduce scanning plasmon-enhanced microscopy (SPEM) and demonstrate its capabilities on MoS2 and WSe2 nanosheets. SPEM combines a nanoparticle-on-mirror (NPoM) configuration with a portable conductive cantilever, enabling simultaneous optical and electrical characterization. This distinguishes it from other current techniques that cannot provide both characterizations simultaneously. It offers a competitive optical resolution of 600 nm with local enhancement of optical signal up to 20,000 times. A single gold nanoparticle with a 15 nm radius forms pristine, nondamaging van der Waals contact, which allows observation of unexpected p-type behavior of MoS2 at the nanoscale. SPEM reconstructs the NPoM method by eliminating the need for extensive statistical analysis and offering excellent nanoscale mapping resolution of any selected region. It surpasses other scanning techniques in combining precise optical and electrical characterization, interactive simplicity, tip durability, and reproducibility, positioning it as the optimal tool for advancing nanoelectronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在偶氮苯薄膜上的表面浮雕中制造了大型衍射光栅,并使用软剥离光刻技术将其转移到柔性PDMS衬底上。PDMS光栅沿光栅矢量轴应变,并使用衍射角测量分析所得表面形貌,AFM图像和表面等离子体共振(SPR)光谱。所有测量方法均表现出应变的线性响应,表明这些传感器在实际应用中的可用性。对于基于SPR的应变传感,随着应变的增加,观察到螺距的增加和调制深度的减小。SPR峰移动〜1.0nm波长,SPR强度降低〜0.3a.u.每百分比施加的应变。测试的PDMS样品即使在多次拉伸和松弛循环后仍保持其完整性,使他们成为一个合适的应变传感器。
    Large-scale diffraction gratings were fabricated in surface relief on azobenzene thin films and transferred to flexible PDMS substrates using soft lift-off lithography. The PDMS gratings were strained along the grating vector axis and the resulting surface topography was analyzed using diffraction angle measurements, AFM imagery and surface plasmon resonance (SPR) spectra. All measurement methods exhibited a linear response in strain indicating the useability of these sensors in real-world applications. For SPR-based strain sensing, an increasing pitch and a decreasing modulation depth were observed with increasing strain. The SPR peak shifted by ~1.0 nm wavelength and the SPR intensity decreased by ~0.3 a.u. per percentage of applied strain. The tested PDMS samples retained their integrity even after multiple cycles of stretching and relaxation, making them a suitable strain sensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解生物分子的功能取决于其3D构象或二级结构。奇拉拉敏感,基于UV-vis圆偏振光的差分吸收的光学活性技术在快速表征二级结构方面表现出色。然而,拉曼光谱,一种确定简单分子结构的强大方法,由于固有的弱光学活性,对生物分子结构分析的能力有限,需要毫摩尔(mM)样品量。在超灵敏的生物分子构象检测中利用拉曼光谱取得了突破,超过常规拉曼光学活性15个数量级。该策略将手性等离子体超表面与非手性分子拉曼报道分子相结合,并能够在≤阿托摩尔水平(单层)上检测模型肽(聚L/D-赖氨酸)的不同构象(α-螺旋和无规卷曲)。这种特殊的灵敏度源于检测局部的能力,使用分子拉曼报道分子,由生物分子的存在引起的手性纳米腔的电磁(EM)环境的分子尺度变化。通过掺入非手性Au纳米颗粒实现进一步的信号增强。纳米颗粒的引入产生了极端光学手性的高度局部化区域。这种方法,利用拉曼,一个普遍的现象,为超灵敏检测不同生物分子结构的下一代技术铺平了道路。
    Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米光子生物传感器通过增强和限制亚波长体积中的光,在存在强背景信号的情况下提供卓越的灵敏度。在纳米光子生物传感器领域,由纳米孔径内的纳米天线组成的盒中天线(AiB)设计已经证明在生理相关条件下具有显著的单分子荧光检测灵敏度。然而,它们的全部潜力尚未被开发,因为目前的设计禁止有洞察力的相关多色单分子研究,并且在通量方面受到限制。这里,我们通过引入铝基六边形密堆积AiB(HCP-AiB)阵列来克服这些限制。我们的方法使用交替的三色激发方案和落射荧光检测,可以并行读出超过1000个HCP-AiB,具有多达微摩尔浓度的多色单分子灵敏度。值得注意的是,高密度HCP-AiB阵列不仅能够在微摩尔浓度下进行高通量研究,而且在纳摩尔范围内提供高的单分子检测概率。我们证明,即使在低毫秒范围内成像,使用光学基准标记也可以进行稳健且无对准的相关多色研究。这些进展为使用HCP-AiB阵列作为生物传感器架构以单分子动力学的高通量多色研究铺平了道路。
    Nanophotonic biosensors offer exceptional sensitivity in the presence of strong background signals by enhancing and confining light in subwavelength volumes. In the field of nanophotonic biosensors, antenna-in-box (AiB) designs consisting of a nanoantenna within a nanoaperture have demonstrated remarkable single-molecule fluorescence detection sensitivities under physiologically relevant conditions. However, their full potential has not yet been exploited as current designs prohibit insightful correlative multicolor single-molecule studies and are limited in terms of throughput. Here, we overcome these constraints by introducing aluminum-based hexagonal close-packed AiB (HCP-AiB) arrays. Our approach enables the parallel readout of over 1000 HCP-AiBs with multicolor single-molecule sensitivity up to micromolar concentrations using an alternating three-color excitation scheme and epi-fluorescence detection. Notably, the high-density HCP-AiB arrays not only enable high-throughput studies at micromolar concentrations but also offer high single-molecule detection probabilities in the nanomolar range. We demonstrate that robust and alignment-free correlative multicolor studies are possible using optical fiducial markers even when imaging in the low millisecond range. These advancements pave the way for the use of HCP-AiB arrays as biosensor architectures for high-throughput multicolor studies on single-molecule dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在复杂的肿瘤微环境中,癌细胞和基质细胞都经历了快速的代谢适应以支持它们的生长。鉴于代谢分泌组在促进肿瘤进展中的相关作用,其独特的代谢特征已成为潜在的生物标志物和治疗靶点。因此,已开发出快速准确的工具,以高灵敏度和高分辨率跟踪肿瘤微环境中的代谢变化。表面增强拉曼散射(SERS)是一种高度灵敏的分析技术,已被证明对检测生物介质中的代谢物有效。然而,在复杂的细胞环境中,例如在肿瘤基质3D体外模型中,分析分泌的代谢物仍然具有挑战性.为了解决这个限制,我们采用了基于SERS的策略来研究3D培养中胰腺肿瘤模型的代谢分泌组.我们旨在监测与胰腺癌细胞或癌症相关成纤维细胞的3D培养物相比,分层胰腺癌基质球体的免疫抑制潜力。专注于通过IDO-1酶将色氨酸代谢转化为犬尿氨酸。我们还试图阐明色氨酸消耗与大小相关的动态,时间演变,和球体的组成,以及评估针对IDO-1机制的不同药物的效果。因此,我们确认SERS可以成为优化癌症球体的有价值的工具,与它们的色氨酸代谢能力有关,可能允许高通量球体分析。
    In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution. Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique and has been proven efficient toward the detection of metabolites in biological media. However, profiling secreted metabolites in complex cellular environments such as those in tumor-stroma 3D in vitro models remains challenging. To address this limitation, we employed a SERS-based strategy to investigate the metabolic secretome of pancreatic tumor models within 3D cultures. We aimed to monitor the immunosuppressive potential of stratified pancreatic cancer-stroma spheroids as compared to 3D cultures of either pancreatic cancer cells or cancer-associated fibroblasts, focusing on the metabolic conversion of tryptophan into kynurenine by the IDO-1 enzyme. We additionally sought to elucidate the dynamics of tryptophan consumption in correlation with the size, temporal evolution, and composition of the spheroids, as well as assessing the effects of different drugs targeting the IDO-1 machinery. As a result, we confirm that SERS can be a valuable tool toward the optimization of cancer spheroids, in connection with their tryptophan metabolizing capacity, potentially allowing high-throughput spheroid analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光学微腔,特别是由等离子体纳米棒增强的耳语画廊模式(WGM)微腔,正在成为单分子传感的强大平台。然而,来自等离子体近场的光学力对分析物分子的影响未被充分理解。使用标准光等离子体WGM单分子传感器监测两种酶,两者都经历了从开放到封闭到开放的构象转变,WGM传感器在构象变化期间酶的原子移动通过等离子体热点的电场梯度时对酶所做的工作已经被量化。由于传感器在分析物酶上所做的工作可以通过改变WGM强度来调节,WGM微腔系统可用于施加自由能量惩罚以在单分子水平上调节酶活性。这些发现促进了对WGM单分子传感中光学力的理解,可能导致通过定制的光学调制在单分子水平上精确操纵酶活性的能力。
    Optical microcavities, particularly whispering gallery mode (WGM) microcavities enhanced by plasmonic nanorods, are emerging as powerful platforms for single-molecule sensing. However, the impact of optical forces from the plasmonic near field on analyte molecules is inadequately understood. Using a standard optoplasmonic WGM single-molecule sensor to monitor two enzymes, both of which undergo an open-to-closed-to-open conformational transition, the work done on an enzyme by the WGM sensor as atoms of the enzyme move through the electric field gradient of the plasmonic hotspot during conformational change has been quantified. As the work done by the sensor on analyte enzymes can be modulated by varying WGM intensity, the WGM microcavity system can be used to apply free energy penalties to regulate enzyme activity at the single-molecule level. The findings advance the understanding of optical forces in WGM single-molecule sensing, potentially leading to the capability to precisely manipulate enzyme activity at the single-molecule level through tailored optical modulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号