piRNA pathway

piRNA 通路
  • 文章类型: Journal Article
    不同的异染色质蛋白1(HP1)家族成员在异染色质的形成和维持中起着至关重要的作用。尽管它们的染色体结构域对二和三甲基化组蛋白H3赖氨酸9(H3K9me2/3)具有相似的亲和力,不同的HP1蛋白表现出不同的染色质结合模式,可能是由于与各种特异性因素的相互作用。以前,我们发现HP1蛋白Rhino的染色质结合模式,果蝇PIWI相互作用RNA(piRNA)途径的关键因素,在很大程度上由一种名为Kipferl的DNA序列特异性C2H2锌指蛋白定义(Baumgartner等人。,2022年)。这里,我们阐明了Rhino与其指导因子Kipferl相互作用的分子基础。通过系统发育分析,结构预测,和体内遗传学,我们鉴定了Rhino的色域内的单个氨基酸变化,G31D,这不会影响H3K9me2/3结合,但会破坏Rhino和Kipferl之间的相互作用。携带rhinoG31D突变表型突变的苍蝇,犀牛从piRNA簇重新分配到卫星重复序列,引起rhinoG31D果蝇卵巢piRNA谱的明显变化。因此,犀牛的色域作为双特异性模块,促进与组蛋白标记和DNA结合蛋白的相互作用。
    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino\'s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino\'s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    原发性生精失败导致的非梗阻性无精子症(NOA)是男性不育的最严重形式之一,主要是因为治疗选择非常有限。除了它们的诊断价值,NOA的基因检测也具有预后潜力。具体来说,基因诊断能够建立基因型-睾丸表型相关性,which,在某些情况下,提供睾丸精子提取(TESE)的阴性预测值,从而防止不必要的外科手术。在这项研究中,我们采用全基因组测序(WGS)对一个伊朗NOA家族的两代人进行了调查,并在TDRKH中鉴定了一个纯合剪接变体(NM_001083965.2:c.562-2A>T).TDRKH编码生殖细胞中piRNA生物发生所必需的保守线粒体膜锚定因子。在Tdrkh基因敲除小鼠中,生殖细胞中反转录转座子的去抑制导致生精停滞和男性不育。以前,我们的团队通过对北非队列的调查报告了TDRKH参与人类NOA病例.这项研究标志着TDRKH在NOA和人类男性不育中的作用的第二次报告,强调了piRNA途径在精子发生中的重要性。此外,在这两项研究中,我们证明了携带TDRKH变体的男性,类似于敲除小鼠,表现出完全的生精停滞,与睾丸精子回收失败有关。
    Non-obstructive azoospermia (NOA) resulting from primary spermatogenic failure represents one of the most severe forms of male infertility, largely because therapeutic options are very limited. Beyond their diagnostic value, genetic tests for NOA also hold prognostic potential. Specifically, genetic diagnosis enables the establishment of genotype-testicular phenotype correlations, which, in some cases, provide a negative predictive value for testicular sperm extraction (TESE), thereby preventing unnecessary surgical procedures. In this study, we employed whole-genome sequencing (WGS) to investigate two generations of an Iranian family with NOA and identified a homozygous splicing variant in TDRKH (NM_001083965.2: c.562-2A>T). TDRKH encodes a conserved mitochondrial membrane-anchored factor essential for piRNA biogenesis in germ cells. In Tdrkh knockout mice, de-repression of retrotransposons in germ cells leads to spermatogenic arrest and male infertility. Previously, our team reported TDRKH involvement in human NOA cases through the investigation of a North African cohort. This current study marks the second report of TDRKH\'s role in NOA and human male infertility, underscoring the significance of the piRNA pathway in spermatogenesis. Furthermore, across both studies, we demonstrated that men carrying TDRKH variants, similar to knockout mice, exhibit complete spermatogenic arrest, correlating with failed testicular sperm retrieval.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    果蝇属的物种已成为物种形成研究中最喜欢的模型;但是,种间生殖不相容性的遗传因素研究不足。这里,我们通过杂交果蝇雌性和果蝇雄性对杂种雌性不育进行了分析。使用转录组学数据分析和分子,细胞,和遗传方法,我们分析了差异基因表达,转座因子(TE)活性,piRNA生物发生,和杂种卵子发生的功能缺陷。生殖细胞早逝是杂交卵巢中最突出的缺陷。由于编码piRNA通路组分的基因表达差异,犀牛和僵局,杂种卵巢中的功能性RDCmel复合物未组装。然而,RDCsim复合物的活性在杂交体中得以维持,而与piRNA簇的基因组起源无关.尽管在杂交卵巢中发现了一组过度表达的TEs,我们发现没有证据表明它们的活性可以被认为是杂种不育的主要原因。我们揭示了杂交种系中Vasa蛋白表达的复杂模式,包括Vasim等位基因的部分AT-chXpiRNA靶向和血管内表达的显著合子延迟。我们得出的结论是,杂种不育表型是由物种之间复杂的多位点差异引起的。
    Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为后生物种生殖细胞的保守标记,DEAD盒RNA解旋酶Vasa(DDX4)由于其多种功能表现而仍然是全球研究的主题。Vasa参与一组生物体中原始生殖细胞的形成,并有助于生殖系干细胞的维持。Vasa在piRNA介导的有害基因组元件的沉默和所选mRNA的翻译调节中是重要的参与者。Vasa是胚芽颗粒的顶级蛋白质,分隔RNA加工因子的液滴细胞器。这里,我们调查了在理解Vasa蛋白在不同真核生物配子发生中的多方面功能方面的当前进展和问题,从线虫到人类。
    Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA指导的转座子沉默在哺乳动物体细胞和种系中起作用以保护基因组完整性。piRNA通路和HUSH复合物通过识别其新生转录物识别活性转座子,但是缺乏对这些不同途径如何进化的机械理解。TASOR是HUSH复合物的重要组成部分。TSOR的DUF3715结构域采用伪PARP结构,并且是转座子沉默所必需的,其方式与复杂组装无关。TEX15,一种必需的piRNA途径因子,还包含DUF3715域。这里,我们显示TASOR和TEX15的DUF3715结构域具有广泛的结构同源性。我们发现DUF3715结构域出现在早期真核生物中,而在脊椎动物中它仅限于TEX15,TASOR,和TASORB直系同源物。虽然在后生动物中发现了TSOR样蛋白,TEX15是脊椎动物特异性的。TEX15和TSOR样DUF3715结构域的分支可能发生在早期后生动物进化中。值得注意的是,尽管进化距离很远,来自不同TEX15序列的DUF3715结构域可以在功能上替代TSOR中的相同结构域并介导转座子沉默。因此,我们将此功能未知的结构域称为RNA指导的假PARP转座子沉默(RDTS)结构域。总之,我们显示了这些关键转座子沉默途径之间意想不到的功能联系。
    RNA-directed transposon silencing operates in the mammalian soma and germline to safeguard genomic integrity. The piRNA pathway and the HUSH complex identify active transposons through recognition of their nascent transcripts, but mechanistic understanding of how these distinct pathways evolved is lacking. TASOR is an essential component of the HUSH complex. TASOR\'s DUF3715 domain adopts a pseudo-PARP structure and is required for transposon silencing in a manner independent of complex assembly. TEX15, an essential piRNA pathway factor, also contains the DUF3715 domain. Here, we show that TASOR\'s and TEX15\'s DUF3715 domain share extensive structural homology. We found that the DUF3715 domain arose in early eukaryotes and that in vertebrates it is restricted to TEX15, TASOR, and TASORB orthologs. While TASOR-like proteins are found throughout metazoa, TEX15 is vertebrate-specific. The branching of TEX15 and the TASOR-like DUF3715 domain likely occurred in early metazoan evolution. Remarkably, despite this vast evolutionary distance, the DUF3715 domain from divergent TEX15 sequences can functionally substitute the DUF3715 domain of TASOR and mediates transposon silencing. We have thus termed this domain of unknown function as the RNA-directed pseudo-PARP transposon silencing (RDTS) domain. In summary, we show an unexpected functional link between these critical transposon silencing pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脆性X综合征是一种影响智力和社会交往的神经发育性疾病。果蝇代表了研究这种综合征的神经元通路的综合模型,特别是因为该模型概括了复杂的行为表型。果蝇脆性X蛋白,或FMRP,是正常的神经元结构和周围和中枢神经系统正确的突触分化所必需的,以及神经元回路发育过程中的突触连接。在分子水平上,FMRP在RNA稳态中起着至关重要的作用,包括转座子RNA调节中的作用。转座子是在转录和转录后水平上调节的重复序列,以避免基因组不稳定。在果蝇模型中,响应染色质松弛的脑中转座子的去调节先前与神经变性事件有关。这里,我们首次证明FMRP是果蝇“功能丧失”dFmr1突变体的幼虫和成年大脑中转座子沉默所必需的。这项研究强调苍蝇是孤立的,定义为社会条件,体验转座因子的激活。总之,这些结果表明转座子在脆性X的某些神经系统改变的发病机理以及异常的社会行为中起作用。
    Fragile X syndrome is a neuro-developmental disease affecting intellectual abilities and social interactions. Drosophila melanogaster represents a consolidated model to study neuronal pathways underlying this syndrome, especially because the model recapitulates complex behavioural phenotypes. Drosophila Fragile X protein, or FMRP, is required for a normal neuronal structure and for correct synaptic differentiation in both the peripheral and central nervous systems, as well as for synaptic connectivity during development of the neuronal circuits. At the molecular level, FMRP has a crucial role in RNA homeostasis, including a role in transposon RNA regulation in the gonads of D. m. Transposons are repetitive sequences regulated at both the transcriptional and post-transcriptional levels to avoid genomic instability. De-regulation of transposons in the brain in response to chromatin relaxation has previously been related to neurodegenerative events in Drosophila models. Here, we demonstrate for the first time that FMRP is required for transposon silencing in larval and adult brains of Drosophila \"loss of function\" dFmr1 mutants. This study highlights that flies kept in isolation, defined as asocial conditions, experience activation of transposable elements. In all, these results suggest a role for transposons in the pathogenesis of certain neurological alterations in Fragile X as well as in abnormal social behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可转座元素(TE)及其宿主的沉默机制参与了种系军备竞赛动态,形成了TE的积累,因此,基因组大小。在具有极大基因组(>10Gb)的动物物种中,TE积累已经被推到了极致,提示TE沉默是否也偏离典型条件的问题。为了解决这个问题,我们描述了通过两种途径-piRNA途径和KRAB-ZFP转录抑制-在Ranodonsibiricus的雄性和雌性性腺中的TE沉默,具有21Gb基因组的sal物种。我们量化1)基因组TE多样性,2)TE表达式,和3)小RNA表达,并发现piRNA的表达与它们在卵巢和睾丸中沉默的TEs之间存在显着关系。我们还定量了在基因组大小为1至130Gb的西比氏菌和14种其他脊椎动物中的TE沉默途径基因表达,并且发现途径表达与基因组大小之间没有关联。一起来看,我们的结果表明,巨大的sibiricus基因组包括至少19个假定活跃的TE超家族,所有这些都是piRNA途径的目标,与它们的表达水平成比例,提示piRNA介导的全面沉默。睾丸的TE表达高于卵巢,这表明它们可能对物种的高基因组TE负荷做出更多贡献。我们认为,文献中对TE沉默和基因组巨人症的解释显然是相互矛盾的,以及TE沉默途径基因表达与基因组大小之间缺乏相关性,可以通过考虑TE社区或主机当前是否处于军备竞赛动态中的“攻击中”来调和。
    Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species\' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently \"on the attack\" in the arms race dynamic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA干扰系统依赖于小RNA前体的合成,所述小RNA前体的序列定义了这些沉默途径的目标谱。果蝇异染色质蛋白1(HP1)变体Rhino允许在种系细胞中富含转座子的异色基因座内转录PIWI相互作用RNA(piRNA)前体。目前的模型表明,犀牛在piRNA来源基因座上的特定染色质占有率是由组蛋白标记和母系遗传的piRNAs决定的。但也暗示了其他人的存在,未发现的特异性线索。这里,我们鉴定了锌指相关结构域(ZAD)-C2H2锌指蛋白的不同家族的成员,Kipferl,作为卵巢中关键的犀牛辅助因子。通过与富含鸟苷的DNA基序结合并与犀牛色域相互作用,Kipferl将犀牛招募到特定基因座并使其稳定在染色质上。在kipferl突变果蝇中,犀牛从其大多数目标染色质基因座中丢失,而是在着丝粒卫星阵列上积累,导致靶向piRNAs的转座子水平降低和生育力受损。我们的发现揭示了DNA序列,除了H3K9me3标志,确定piRNA源基因座的身份,并提供有关犀牛如何陷入遗传冲突的交火的见解。
    我们DNA中的基因编码我们身体计划的要素,以及身体中的每项任务是如何实现的。然而,我们的基因组还包含许多不编码功能基因的DNA重复区域。这些区域中的一些是被称为转座子的遗传寄生虫,它们试图在宿主的DNA周围繁殖和传播。为了防止转座子DNA干扰身体的运作方式,人类和其他动物已经进化出复杂的防御机制来识别转座子并防止它们繁殖。在一个这样的机制中,称为piRNA通路,宿主制造称为piRNAs的小分子,其序列与转座子的序列互补,并充当引导使转座子沉默。制备这些piRNA的指令以转座子片段的形式存储在宿主DNA的专用区域中,称为piRNA簇。这些集群因此充当遗传记忆,允许宿主识别并沉默宿主基因组中其他位置的特定转座子。在果蝇中,一种叫做Rhino的蛋白质与piRNA簇结合,这些簇被密集地包装以允许piRNA被制造出来。然而,目前还不清楚犀牛是如何识别和结合piRNA簇的,但不是其他类似密集的DNA区域。Baumgartner等人。使用了遗传的组合,基因组,和成像方法来研究犀牛如何在果蝇基因组中找到自己的方式。他们发现另一种称为Kipferl的蛋白质与Rhino相互作用,并且Rhino需要与几乎所有的piRNA簇结合。由于Kipferl本身可以与Rhino需要找到的序列结合,结果表明,Kipferl可以在密集的piRNA簇中招募和启动Rhino结合。进一步的实验发现,在缺乏Kipferl的苍蝇中,犀牛与称为卫星重复的DNA区域结合,暗示这些自私序列可能会为了自己的利益而争夺犀牛。Kipferl和Rhino共同定义piRNA途径的记忆系统的发现极大地促进了我们对如何建立基于小RNA的序列特异性防御系统的理解。
    RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino\'s specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.
    The genes within our DNA encode the essentials of our body plan and how each task in the body is achieved. However, our genome also contains many repetitive regions of DNA that do not encode functional genes. Some of these regions are genetic parasites known as transposons that try to multiply and spread around the DNA of their host. To prevent transposon DNA from interfering with the way the body operates, humans and other animals have evolved elaborate defense mechanisms to identify transposons and prevent them from multiplying. In one such mechanism, known as the piRNA pathway, the host makes small molecules known as piRNAs that have sequences complementary to those of transposons, and act as guides to silence the transposons. The instructions to make these piRNAs are stored in the form of transposon fragments in dedicated regions of host DNA called piRNA clusters. These clusters thereby act as genetic memory, allowing the host to recognize and silence specific transposons in other locations within the host’s genome. In fruit flies, a protein called Rhino binds to piRNA clusters that are densely packed to allow piRNAs to be made. However, it remained unclear how Rhino is able to identify and bind to piRNA clusters, but not to other similarly densely packed regions of DNA. Baumgartner et al. used a combination of genetic, genomic, and imaging approaches to study how Rhino finds its way in the fruit fly genome. They found that another protein called Kipferl interacts with Rhino and is required for Rhino to bind to nearly all piRNA clusters. Since Kipferl can by itself bind to the sequences that Rhino needs to find, the results suggest that Kipferl acts to recruit and initiate Rhino binding within densely packed piRNA clusters. Further experiments found that, in flies lacking Kipferl, Rhino binds to regions of DNA called Satellite repeats, hinting that these selfish sequences may compete for Rhino for their own benefit. The finding that Kipferl and Rhino work together to define the memory system of the piRNA pathway strongly advances our understanding of how a sequence-specific defense system based on small RNAs can be established.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为一种针对转座因子的防御机制,PIWI相互作用RNA(piRNA)途径维持基因组完整性并确保性腺中适当的配子发生。协调了许多因素以确保piRNA途径的正常运行。Spindle-E(Spn-E)基因是最早显示参与piRNA途径的基因之一。在这项研究中,我们对鳞翅目昆虫模型中的Spn-E进行了功能分析,家蚕.与在果蝇和小鼠中观察到的种系特异性表达模式不同,BmSpn-E在所有测试的组织中普遍表达,它在性腺中高度表达。免疫荧光染色显示,BmSpn-E定位于卵巢生殖细胞和体细胞,并在睾丸精母细胞中表达。我们使用二元转基因CRISPR/Cas9系统来构建BmSpn-E突变体。BmSpn-E表达的缺失导致性腺中转座子的抑制。我们还发现突变性腺比野生型性腺小得多,并且突变性腺中生殖细胞的数量大大降低。实时定量PCR分析和TUNEL染色显示,突变性腺细胞凋亡大大增强。Further,我们发现BmSpn-E突变在幼虫早期影响性腺发育和配子发生。总之,我们的数据提供了第一个证据,表明BmSpn-E在B.mori的性腺发育和配子发生中起着至关重要的作用。
    As a defense mechanism against transposable elements, the PIWI-interacting RNA (piRNA) pathway maintains genomic integrity and ensures proper gametogenesis in gonads. Numerous factors are orchestrated to ensure normal operation of the piRNA pathway. Spindle-E (Spn-E) gene was one of the first genes shown to participate in the piRNA pathway. In this study, we performed functional analysis of Spn-E in the model lepidopteran insect, Bombyx mori. Unlike the germline-specific expression pattern observed in Drosophila and mouse, BmSpn-E was ubiquitously expressed in all tissues tested, and it was highly expressed in gonads. Immunofluorescent staining showed that BmSpn-E was localized in both germ cells and somatic cells in ovary and was expressed in spermatocytes in testis. We used a binary transgenic CRISPR/Cas9 system to construct BmSpn-E mutants. Loss of BmSpn-E expression caused derepression of transposons in gonads. We also found that mutant gonads were much smaller than wild-type gonads and that the number of germ cells was considerably lower in mutant gonads. Quantitative real-time PCR analysis and TUNEL staining revealed that apoptosis was greatly enhanced in mutant gonads. Further, we found that the BmSpn-E mutation impacted gonadal development and gametogenesis at the early larval stage. In summary, our data provided the first evidence that BmSpn-E plays vital roles in gonadal development and gametogenesis in B. mori.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结合免疫染色的RNA荧光原位杂交(FISH)技术是同时可视化特定转录物和感兴趣的蛋白质的强大方法。尽管完整RNAFISH通常用于确定RNA细胞内定位,复杂组织中RNA分布的详细图片仍然是一个挑战。主要问题是组织内形态上不同的细胞的各种渗透性。我们通过开发一种基于组织标本差异渗透处理的方法来克服这一挑战。我们已经测试和优化了RNAFISH结合免疫荧光染色(RNAFISH/IF)的条件,以检测果蝇卵巢和合胞胚胎中的母体端粒逆转录转座子HeT-ARNP。这里描述的方法适用于多种生物组织标本。
    The RNA fluorescence in situ hybridization (FISH) technique combined with immunostaining is a powerful method to visualize a specific transcript and a protein of interest simultaneously. Although whole-mount RNA FISH is routinely used to determine RNA intracellular localization, a detailed picture of RNA distribution in complex tissues remains a challenge. The main problem is the various permeability of morphologically different cells within a tissue. We overcome this challenge by developing an approach based on differential permeabilization treatment of tissue specimens. We have tested and optimized conditions for RNA FISH combined with immunofluorescent staining (RNA FISH/IF) to detect the maternal telomeric retrotransposon HeT-A RNPs in the Drosophila ovaries and syncytial embryos. Methods described here are applicable to a broad variety of biological tissue specimens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号