piRNA pathway

piRNA 通路
  • 文章类型: Journal Article
    不同的异染色质蛋白1(HP1)家族成员在异染色质的形成和维持中起着至关重要的作用。尽管它们的染色体结构域对二和三甲基化组蛋白H3赖氨酸9(H3K9me2/3)具有相似的亲和力,不同的HP1蛋白表现出不同的染色质结合模式,可能是由于与各种特异性因素的相互作用。以前,我们发现HP1蛋白Rhino的染色质结合模式,果蝇PIWI相互作用RNA(piRNA)途径的关键因素,在很大程度上由一种名为Kipferl的DNA序列特异性C2H2锌指蛋白定义(Baumgartner等人。,2022年)。这里,我们阐明了Rhino与其指导因子Kipferl相互作用的分子基础。通过系统发育分析,结构预测,和体内遗传学,我们鉴定了Rhino的色域内的单个氨基酸变化,G31D,这不会影响H3K9me2/3结合,但会破坏Rhino和Kipferl之间的相互作用。携带rhinoG31D突变表型突变的苍蝇,犀牛从piRNA簇重新分配到卫星重复序列,引起rhinoG31D果蝇卵巢piRNA谱的明显变化。因此,犀牛的色域作为双特异性模块,促进与组蛋白标记和DNA结合蛋白的相互作用。
    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino\'s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino\'s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    果蝇属的物种已成为物种形成研究中最喜欢的模型;但是,种间生殖不相容性的遗传因素研究不足。这里,我们通过杂交果蝇雌性和果蝇雄性对杂种雌性不育进行了分析。使用转录组学数据分析和分子,细胞,和遗传方法,我们分析了差异基因表达,转座因子(TE)活性,piRNA生物发生,和杂种卵子发生的功能缺陷。生殖细胞早逝是杂交卵巢中最突出的缺陷。由于编码piRNA通路组分的基因表达差异,犀牛和僵局,杂种卵巢中的功能性RDCmel复合物未组装。然而,RDCsim复合物的活性在杂交体中得以维持,而与piRNA簇的基因组起源无关.尽管在杂交卵巢中发现了一组过度表达的TEs,我们发现没有证据表明它们的活性可以被认为是杂种不育的主要原因。我们揭示了杂交种系中Vasa蛋白表达的复杂模式,包括Vasim等位基因的部分AT-chXpiRNA靶向和血管内表达的显著合子延迟。我们得出的结论是,杂种不育表型是由物种之间复杂的多位点差异引起的。
    Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为后生物种生殖细胞的保守标记,DEAD盒RNA解旋酶Vasa(DDX4)由于其多种功能表现而仍然是全球研究的主题。Vasa参与一组生物体中原始生殖细胞的形成,并有助于生殖系干细胞的维持。Vasa在piRNA介导的有害基因组元件的沉默和所选mRNA的翻译调节中是重要的参与者。Vasa是胚芽颗粒的顶级蛋白质,分隔RNA加工因子的液滴细胞器。这里,我们调查了在理解Vasa蛋白在不同真核生物配子发生中的多方面功能方面的当前进展和问题,从线虫到人类。
    Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA指导的转座子沉默在哺乳动物体细胞和种系中起作用以保护基因组完整性。piRNA通路和HUSH复合物通过识别其新生转录物识别活性转座子,但是缺乏对这些不同途径如何进化的机械理解。TASOR是HUSH复合物的重要组成部分。TSOR的DUF3715结构域采用伪PARP结构,并且是转座子沉默所必需的,其方式与复杂组装无关。TEX15,一种必需的piRNA途径因子,还包含DUF3715域。这里,我们显示TASOR和TEX15的DUF3715结构域具有广泛的结构同源性。我们发现DUF3715结构域出现在早期真核生物中,而在脊椎动物中它仅限于TEX15,TASOR,和TASORB直系同源物。虽然在后生动物中发现了TSOR样蛋白,TEX15是脊椎动物特异性的。TEX15和TSOR样DUF3715结构域的分支可能发生在早期后生动物进化中。值得注意的是,尽管进化距离很远,来自不同TEX15序列的DUF3715结构域可以在功能上替代TSOR中的相同结构域并介导转座子沉默。因此,我们将此功能未知的结构域称为RNA指导的假PARP转座子沉默(RDTS)结构域。总之,我们显示了这些关键转座子沉默途径之间意想不到的功能联系。
    RNA-directed transposon silencing operates in the mammalian soma and germline to safeguard genomic integrity. The piRNA pathway and the HUSH complex identify active transposons through recognition of their nascent transcripts, but mechanistic understanding of how these distinct pathways evolved is lacking. TASOR is an essential component of the HUSH complex. TASOR\'s DUF3715 domain adopts a pseudo-PARP structure and is required for transposon silencing in a manner independent of complex assembly. TEX15, an essential piRNA pathway factor, also contains the DUF3715 domain. Here, we show that TASOR\'s and TEX15\'s DUF3715 domain share extensive structural homology. We found that the DUF3715 domain arose in early eukaryotes and that in vertebrates it is restricted to TEX15, TASOR, and TASORB orthologs. While TASOR-like proteins are found throughout metazoa, TEX15 is vertebrate-specific. The branching of TEX15 and the TASOR-like DUF3715 domain likely occurred in early metazoan evolution. Remarkably, despite this vast evolutionary distance, the DUF3715 domain from divergent TEX15 sequences can functionally substitute the DUF3715 domain of TASOR and mediates transposon silencing. We have thus termed this domain of unknown function as the RNA-directed pseudo-PARP transposon silencing (RDTS) domain. In summary, we show an unexpected functional link between these critical transposon silencing pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脆性X综合征是一种影响智力和社会交往的神经发育性疾病。果蝇代表了研究这种综合征的神经元通路的综合模型,特别是因为该模型概括了复杂的行为表型。果蝇脆性X蛋白,或FMRP,是正常的神经元结构和周围和中枢神经系统正确的突触分化所必需的,以及神经元回路发育过程中的突触连接。在分子水平上,FMRP在RNA稳态中起着至关重要的作用,包括转座子RNA调节中的作用。转座子是在转录和转录后水平上调节的重复序列,以避免基因组不稳定。在果蝇模型中,响应染色质松弛的脑中转座子的去调节先前与神经变性事件有关。这里,我们首次证明FMRP是果蝇“功能丧失”dFmr1突变体的幼虫和成年大脑中转座子沉默所必需的。这项研究强调苍蝇是孤立的,定义为社会条件,体验转座因子的激活。总之,这些结果表明转座子在脆性X的某些神经系统改变的发病机理以及异常的社会行为中起作用。
    Fragile X syndrome is a neuro-developmental disease affecting intellectual abilities and social interactions. Drosophila melanogaster represents a consolidated model to study neuronal pathways underlying this syndrome, especially because the model recapitulates complex behavioural phenotypes. Drosophila Fragile X protein, or FMRP, is required for a normal neuronal structure and for correct synaptic differentiation in both the peripheral and central nervous systems, as well as for synaptic connectivity during development of the neuronal circuits. At the molecular level, FMRP has a crucial role in RNA homeostasis, including a role in transposon RNA regulation in the gonads of D. m. Transposons are repetitive sequences regulated at both the transcriptional and post-transcriptional levels to avoid genomic instability. De-regulation of transposons in the brain in response to chromatin relaxation has previously been related to neurodegenerative events in Drosophila models. Here, we demonstrate for the first time that FMRP is required for transposon silencing in larval and adult brains of Drosophila \"loss of function\" dFmr1 mutants. This study highlights that flies kept in isolation, defined as asocial conditions, experience activation of transposable elements. In all, these results suggest a role for transposons in the pathogenesis of certain neurological alterations in Fragile X as well as in abnormal social behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可转座元素(TE)及其宿主的沉默机制参与了种系军备竞赛动态,形成了TE的积累,因此,基因组大小。在具有极大基因组(>10Gb)的动物物种中,TE积累已经被推到了极致,提示TE沉默是否也偏离典型条件的问题。为了解决这个问题,我们描述了通过两种途径-piRNA途径和KRAB-ZFP转录抑制-在Ranodonsibiricus的雄性和雌性性腺中的TE沉默,具有21Gb基因组的sal物种。我们量化1)基因组TE多样性,2)TE表达式,和3)小RNA表达,并发现piRNA的表达与它们在卵巢和睾丸中沉默的TEs之间存在显着关系。我们还定量了在基因组大小为1至130Gb的西比氏菌和14种其他脊椎动物中的TE沉默途径基因表达,并且发现途径表达与基因组大小之间没有关联。一起来看,我们的结果表明,巨大的sibiricus基因组包括至少19个假定活跃的TE超家族,所有这些都是piRNA途径的目标,与它们的表达水平成比例,提示piRNA介导的全面沉默。睾丸的TE表达高于卵巢,这表明它们可能对物种的高基因组TE负荷做出更多贡献。我们认为,文献中对TE沉默和基因组巨人症的解释显然是相互矛盾的,以及TE沉默途径基因表达与基因组大小之间缺乏相关性,可以通过考虑TE社区或主机当前是否处于军备竞赛动态中的“攻击中”来调和。
    Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species\' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently \"on the attack\" in the arms race dynamic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结合免疫染色的RNA荧光原位杂交(FISH)技术是同时可视化特定转录物和感兴趣的蛋白质的强大方法。尽管完整RNAFISH通常用于确定RNA细胞内定位,复杂组织中RNA分布的详细图片仍然是一个挑战。主要问题是组织内形态上不同的细胞的各种渗透性。我们通过开发一种基于组织标本差异渗透处理的方法来克服这一挑战。我们已经测试和优化了RNAFISH结合免疫荧光染色(RNAFISH/IF)的条件,以检测果蝇卵巢和合胞胚胎中的母体端粒逆转录转座子HeT-ARNP。这里描述的方法适用于多种生物组织标本。
    The RNA fluorescence in situ hybridization (FISH) technique combined with immunostaining is a powerful method to visualize a specific transcript and a protein of interest simultaneously. Although whole-mount RNA FISH is routinely used to determine RNA intracellular localization, a detailed picture of RNA distribution in complex tissues remains a challenge. The main problem is the various permeability of morphologically different cells within a tissue. We overcome this challenge by developing an approach based on differential permeabilization treatment of tissue specimens. We have tested and optimized conditions for RNA FISH combined with immunofluorescent staining (RNA FISH/IF) to detect the maternal telomeric retrotransposon HeT-A RNPs in the Drosophila ovaries and syncytial embryos. Methods described here are applicable to a broad variety of biological tissue specimens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与PIWI相互作用RNA(piRNA)复合的PIWI进化枝的Argonaute蛋白通过沉默转座因子保护动物种系基因组。研究piRNA生物学的主要实验系统之一是果蝇卵巢。除了经典的诱变,转基因RNA干扰(RNAi),这使得基因表达的组织特异性沉默,在piRNA研究中起着核心作用。这里,我们建立了一个多功能的工具包,专注于piRNA生物学,结合了种系转基因RNAi,piRNA途径关键蛋白的GFP标记系,和报告转基因来建立遗传层次结构。我们比较了本构,泛种系RNAi,具有同等有效的转基因RNAi系统,仅在生殖细胞囊肿形成后才被激活。阶段特异性RNAi使我们能够研究种系细胞存活所必需的基因的作用,例如,核RNA输出或SUMO化途径,在piRNA依赖性和非依赖性转座子沉默中。我们的工作为维也纳果蝇资源中心提供的可扩展遗传工具包奠定了基础。
    Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PIWI相互作用RNA(piRNA)通路控制转座子在动物生殖细胞中的表达,从而确保几代人的基因组稳定性。在果蝇中,piRNAs是通过母体谱系代际遗传的,这已经证明了在piRNA来源基因座的规范以及在女儿的生殖细胞中I-和P-元件的沉默中的重要性。母体遗传的Piwi蛋白在合子基因组激活之前进入早期胚胎的体细胞核,并在其中持续完成胚胎发育所需时间的大约一半。探讨piRNA通路在胚胎体细胞中的作用,我们创造了一种条件不稳定的Piwi蛋白.这使母本沉积的Piwi能够在30分钟内从新产下的胚胎中清除,并且远远早于合子转录的激活。随着时间的推移检查RNA和蛋白质谱,以及与H3K9me3沉积模式的相关性,提示母体沉积的Piwi在减弱发育中胚胎体细胞中合子转座子表达中的作用。特别是,靶向roo的piRNAs的强烈沉积,表达主要限于胚胎发育的元素,导致在活跃的roo插入处沉积瞬时异色标记。我们假设Roo,一个非常成功的移动元素,可能已经采取了在胚胎体细胞中表达的生活方式来逃避生殖细胞的沉默。
    保持DNA的完整性,它编码了生命所需的所有指令,对于确保一个物种的生存至关重要,特别是当遗传信息跨代转移时。DNA,然而,包含自私,移动元素,称为转座子,在基因组周围移动,因此他们的绰号是“跳跃基因”。他们的运动,这些元素也在基因组中繁殖的过程,如果转座子恰好落在基因中间,就会混淆生物体的DNA,产生一个突变,使基因失活。转座子也与癌症的发展有关,这是一组由积累的基因突变驱动的疾病。动物已经进化出各种保护其DNA免受转座子侵害的方法。这些在卵细胞和精子发育中特别重要,统称为生殖细胞。这些细胞可以产生小的RNA片段,类似于DNA的分子,能够识别和解除转座子。虽然已知这些小RNA有效保护成年性腺免受DNA损伤,目前还不清楚如何保护生命初期形成的生殖细胞。了解更多,法布里等人。使用了基因测序的组合,蛋白质结合和成像研究,以观察小RNA的活性,称为piRNAs,从母亲传给她的后代。通过研究果蝇胚胎的基因表达水平,法布里等人。表明某些转座子在胚胎发育的最初几个小时变得高度活跃,对DNA完整性构成潜在威胁。实验还确定了胚胎中控制转座子的活性机制的明确迹象,该机制类似于成年生殖细胞已知的小RNA系统。法布里等人。从胚胎中去除piRNA,发现没有piRNA,转座子更活跃。这表明这些小RNA在早期发育中控制转座子中的直接作用,并证明了早期胚胎中的母系遗传防御系统。这项研究为苍蝇胚胎中转座子的控制提供了见解。需要更多的研究来发现这些胚胎机制在其他动物中是否保守,包括人类。研究防止DNA损伤和保护我们基因组的内在机制,在时间上,帮助确定可能治疗和预防涉及基因突变的疾病的新方法。
    The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the embryonic soma to evade silencing in germ cells.
    Maintaining the integrity of DNA, which encodes all of the instructions necessary for life, is essential for ensuring the survival of a species, especially when genetic information is transferred across generations. DNA, however, contains selfish, mobile elements, called transposons, that move around the genome, hence their nickname ‘jumping genes’. Their movement, a process by which these elements also multiply within genomes, can muddle an organism’s DNA if the transposon happens to land in the middle of a gene, creating a mutation which renders the gene inactive. Transposons have also been linked to the development of cancer, which is a group of diseases driven by accumulating genetic mutations. Animals have evolved various ways of protecting their DNA against transposons. These are especially important in developing egg cells and sperm, known collectively as germ cells. These cells can produce small fragments of RNA, a molecule similar to DNA, which are able to identify and disarm transposons. While it is known that these small RNAs effectively protect adult gonads from DNA damage, it has been unclear how germ cells formed during the beginning of life are protected. To find out more, Fabry et al. used a combination of genetic sequencing, protein binding and imaging studies to look at the activity of small RNAs, called piRNAs, which are passed on from the mother to her progeny. By studying the gene expression levels in fruit fly embryos, Fabry et al. showed that certain transposons become highly active in the first few hours of embryo development, posing a potential threat to DNA integrity. The experiments also identified clear signs in the embryos of an active mechanism for controlling transposons that resembles the small RNA system known from adult germ cells. Fabry et al. removed the piRNAs from the embryos and found that without piRNAs, transposons were more active. This indicates a direct role of these small RNAs in controlling transposons in early development and evidence for a maternally inherited defence system in early embryos. This study provides insights into the control of transposons in fly embryos. More research is needed to find out whether these embryonic mechanisms are conserved in other animals, including humans. Studying the intrinsic mechanisms that prevent DNA damage and protect our genome could, in time, help to identify new approaches to possibly treat and prevent diseases involving genetic mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    HSP90蛋白是一种分子伴侣,因其在生理和应激条件下的许多细胞过程中的作用而被深入研究。这种蛋白质作用于广泛的底物,在癌症和神经系统疾病中具有公认的作用。在这次审查中,我们关注HSP90参与转座因子的沉默和基因组完整性的维持.转座因子的共同特征是新基因组位置的潜在跳跃,导致染色体结构重排,基因突变,并影响基因表达水平。HSP90在控制这些元素中的作用在进化上是保守的,并为人类疾病背后的HSP90相关机制开辟了新的视角。这里,我们讨论了其在piRNA途径调节转座子中的作用可能与神经系统疾病的发作有关的假设。
    The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号