photouncaging

  • 文章类型: Journal Article
    超分辨率成像,尤其是单分子定位方法,引发了一场荧光团工程革命,追逐稀疏的单分子暗亮闪烁变换。然而,从结构上设计荧光团操纵单分子闪烁动力学是一个挑战。在这种追求中,我们通过将可光活化的亚硝基笼式策略创新地整合到自闪烁的磺酰胺中以形成亚硝基笼式磺酰胺罗丹明(NOSR)来开发触发策略。我们的荧光团在光触发的笼式单元释放后表现出可控的自闪烁事件。与自闪烁类似物相比,这种出色的闪烁动力学改善了微管的超分辨率成像完整性。借助最重要的单分子荧光动力学,我们成功地重建了核孔的环状结构和线粒体外膜的轴向形态。我们预见,我们的光活化和自闪烁的合成方法将有助于罗丹明设计超分辨率成像。
    Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    调节性T细胞(Tregs)在介导肿瘤微环境中的免疫抑制中起着至关重要的作用。此外,Tregs导致程序性细胞死亡蛋白1(PD-1)阻断免疫疗法缺乏疗效和过度进行性疾病。因此,Tregs被认为是一个有希望的治疗靶点,特别是与PD-1阻断结合时。然而,Tregs的全身消耗会导致严重的自身免疫不良事件,这对Treg定向治疗提出了严峻挑战。这里,我们开发了一种新的治疗方法,通过近红外多卡霉素光释放(NIR-DPR)局部和主要损害Tregs。在这项技术中,我们制备了抗CD25F(ab')2偶联物,暴露于NIR光后,在表达CD25的细胞中位点特异性地捕获多卡霉素。体外,CD25靶向的NIR-DPR显著增加表达CD25的HT2-A5E细胞的凋亡。当肿瘤在体内用NIR光照射时,肿瘤内CD25+Treg群体减少,Ki-67和白细胞介素-10表达受到抑制,提示肿瘤内CD25+Tregs功能受损。CD25靶向的NIR-DPR抑制肿瘤生长并改善同系小鼠肿瘤模型的存活率。值得注意的是,CD25靶向NIR-DPR协同增强PD-1阻断的疗效,尤其是在CD8+/TregPD-1比例较高的肿瘤中。此外,联合疗法诱导显著的抗癌免疫,包括树突状细胞的成熟,细胞毒性CD8+T细胞的广泛肿瘤内浸润,和增加分化为CD8+记忆T细胞。总之,CD25靶向的NIR-DPR局部和主要靶向肿瘤微环境中的Treg,并协同提高PD-1阻断的疗效,表明这种联合疗法可以是一种合理的抗癌联合免疫疗法。
    Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade. However, systemic depletion of Tregs causes severe autoimmune adverse events, which poses a serious challenge to Treg-directed therapy. Here, we developed a novel treatment to locally and predominantly damage Tregs by near-infrared duocarmycin photorelease (NIR-DPR). In this technology, we prepared anti-CD25 F(ab\')2 conjugates, which site-specifically uncage duocarmycin in CD25-expressing cells upon exposure to NIR light. In vitro, CD25-targeted NIR-DPR significantly increased apoptosis of CD25-expressing HT2-A5E cells. When tumors were irradiated with NIR light in vivo, intratumoral CD25+ Treg populations decreased and Ki-67 and Interleukin-10 expression was suppressed, indicating impaired functioning of intratumoral CD25+ Tregs. CD25-targeted NIR-DPR suppressed tumor growth and improved survival in syngeneic murine tumor models. Of note, CD25-targeted NIR-DPR synergistically enhanced the efficacy of PD-1 blockade, especially in tumors with higher CD8+/Treg PD-1 ratios. Furthermore, the combination therapy induced significant anti-cancer immunity including maturation of dendritic cells, extensive intratumoral infiltration of cytotoxic CD8+ T cells, and increased differentiation into CD8+ memory T cells. Altogether, CD25-targeted NIR-DPR locally and predominantly targets Tregs in the tumor microenvironment and synergistically improves the efficacy of PD-1 blockade, suggesting that this combination therapy can be a rational anti-cancer combination immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们利用了由激发态反芳香性释放驱动的环芳构化反应,以生成光子笼醛和酮。我们开发了几种合成路线,以合成作为烯丙基取代的3-(2-(芳基乙炔基)苯基)丙-2-烯-1-醇的光致羰基。含有供体和受体的光老化的芳基醛和酮的库,以及几种光致芳香醛和类固醇5α-胆甾烷-3-酮,被合成并证明了光捕获的良好至优异的产率。
    We utilized a cycloaromatization reaction driven by relief of excited state antiaromaticity to photouncage aldehydes and ketones. We developed several synthetic routes towards the synthesis of photocaged carbonyls as allylically substituted 3-(2-(arylethynyl)phenyl)prop-2-en-1-ols. A library of photocaged aryl aldehydes and ketones containing donors and acceptors, as well as several photocaged fragrance aldehydes and the steroid 5α-cholestan- 3 -one, were synthesized and demonstrated photouncaging in good to excellent yields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hydrogels are powerful materials that more accurately mimic the cellular microenvironment over static two-dimensional culture. Photochemical strategies enable dynamic complexity to be achieved within hydrogels to better mimic the extracellular matrix; however, many photochemical systems to pattern proteins within hydrogels are complicated by long reaction times to immobilize these proteins wherein the protein can lose activity. As proof-of-concept, we demonstrate an elegant method where photocaged proteins are immobilized in hydrogels and then directly photoactivated. Specifically, we immobilized streptavidin-ortho-nitrobenzyl-modified epidermal growth factor (EGF) to cross-linked hyaluronan hydrogels and cultured two EGF-responsive cancer cells of breast and lung therein. We used light to temporally uncage and control EGF activation, thereby inducing cell death in breast cancer cells and proliferation in lung cancer cells. These results show how temporal, photochemical, protein activation influences cellular response and lays the foundation for further advances in manipulating the in vitro environment to control cell fate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Bioluminescence (BL) relies on the enzymatic reaction between luciferase, a substrate conventionally named luciferin, and various cofactors. BL imaging has become a widely used technique to interrogate gene expression and cell fate, both in small and large animal models of research. Recent developments include the generation of improved luciferase-luciferin systems for deeper and more sensitive imaging as well as new caged luciferins to report on enzymatic activity and other intracellular functions. Here, we critically evaluate the emerging tools for BL imaging aiming to provide the reader with an updated compendium of the latest developments (2018-2020) and their notable applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    G protein-coupled receptors (GPCRs) are key biological switches that transmit both internal and external stimuli into the cell interior. Among the GPCRs, the \"light receptor\" rhodopsin has been shown to activate with a rearrangement of the transmembrane (TM) helix bundle within ∼1 ms, while all other receptors are thought to become activated within ∼50 ms to seconds at saturating concentrations. Here, we investigate synchronous stimulation of a dimeric GPCR, the metabotropic glutamate receptor type 1 (mGluR1), by two entirely different methods: (i) UV light-triggered uncaging of glutamate in intact cells or (ii) piezo-driven solution exchange in outside-out patches. Submillisecond FRET recordings between labels at intracellular receptor sites were used to record conformational changes in the mGluR1. At millimolar ligand concentrations, the initial rearrangement between the mGluR1 subunits occurs at a speed of τ 1 ∼ 1-2 ms and requires the occupancy of both binding sites in the mGluR1 dimer. These rapid changes were followed by significantly slower conformational changes in the TM domain (τ 2 ∼ 20 ms). Receptor deactivation occurred with time constants of ∼40 and ∼900 ms for the inter- and intrasubunit conformational changes, respectively. Together, these data show that, at high glutamate concentrations, the initial intersubunit activation of mGluR1 proceeds with millisecond speed, that there is loose coupling between this initial step and activation of the TM domain, and that activation and deactivation follow a cyclic pathway, including-in addition to the inactive and active states-at least two metastable intermediate states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Published Erratum
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comment
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The quantum yields for photouncaging reactions are mostly determined relative to other uncaging reactions, often using 1-(2-nitrophenyl)ethyl-phosphate (\"caged phosphate\"). Herein, we demonstrate that the quantum yields acquired by using this method can be off by an order of magnitude at the typical irradiation wavelengths around 350 nm and describe an easy-to-use alternative procedure using inexpensive azobenzene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号