parvalbumin

小白蛋白
  • 文章类型: Journal Article
    基底外侧杏仁核在调节恐惧和焦虑中起着关键作用,这些过程受到情绪唤醒期间招募的不同神经调节系统的深刻调节。最近的研究表明,BLA中间神经元的活动和BLA主细胞中的抑制性突触传递受神经调节剂的调节,以影响BLA的输出和振荡网络状态。最终是恐惧和焦虑的行为表达。在这次审查中,我们首先总结了BLA抑制性突触中糖皮质激素和内源性大麻素信号相互作用介导的应激诱导焦虑发生的细胞机制。然后,我们讨论了神经调节剂在BLA外周小白蛋白表达(PV)和胆囊收缩素表达(CCK)篮状细胞中聚集在Gq信号通路上诱导的细胞类型特异性活性模式及其对BLA网络振荡和恐惧学习的影响。
    The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑振荡对感知至关重要,记忆,和行为。表达小白蛋白(PV)的中间神经元对于这些振荡至关重要,但是他们的人口动态仍然不清楚。使用电压成像,我们同时记录了小鼠海马波纹振荡期间体内多达26个PV中间神经元的膜电位。我们发现PV电池通过形成高度动态的电池组件而产生纹波频率节律。这些组件从一个周期到另一个周期表现出快速而显著的变化,规模和成员身份差异很大。重要的是,这种变异性不仅仅是单个神经元的随机尖峰失败。相反,其他PV电池的活性包含关于PV电池在给定周期中是否出现尖峰的重要信息。这种协调在没有网络振荡的情况下持续存在,即使细胞没有尖峰,它也存在于亚阈值电位中。中间神经元的动态组装可能提供一种新的机制来调节突触后动力学并灵活快速地影响认知功能。
    Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    特别是在高等真核生物中,蛋白质的N端受到酶的修饰,新生多肽的α-氨基的乙酰化是一个突出的问题。近年来,负责这种修饰的酶的特异性和底物,Nα-末端乙酰转移酶,已经在一些蛋白质组学研究中定位。的异常表达,发现这些酶的突变与几种人类疾病有关,解释了人们对蛋白质Nα末端乙酰化的兴趣。用一些酶,例如具有数千个可能底物的Nα末端乙酰转移酶A复合物,研究人员现在正试图破译Nα末端蛋白乙酰化的功能结果。在这次审查中,我们放大了Nα末端蛋白质乙酰化的一种可能的功能后果;它对蛋白质折叠的影响。使用与人类疾病相关的蛋白质的选定例子,如α-突触核蛋白和亨廷顿蛋白,在这里,我们讨论了Nα末端蛋白乙酰化对蛋白(mis)折叠和聚集的影响有时相互矛盾的发现。
    Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胶质细胞系衍生的神经营养因子(GDNF)是已知的最强的多巴胺神经元功能和存活促进因子之一。由于这个原因,它在多巴胺疾病如帕金森病和精神分裂症中具有临床相关性。在纹状体,GDNF仅在中间神经元中表达,仅占纹状体细胞的0.6%。尽管有临床意义,纹状体GDNF系统乔化的组织学分析和与进入的多巴胺轴突的相关性,带有它的受体RET,仍然是神秘的。这主要是由于缺乏能够可视化GDNF和RET阳性细胞过程的抗体;在这里,我们通过使用敲入标记等位基因克服了这个问题。我们发现GDNF神经元化学吸引RET+轴突的距离至少比中等多刺神经元(MSN)远7倍,占纹状体神经元的95%。此外,我们提供的证据表明酪氨酸羟化酶,多巴胺合成中的限速酶,向多巴胺轴突中的GDNF神经元富集。最后,我们发现GDNF神经元乔化只占纹状体体积的12倍,而MSNs的135倍。总的来说,我们的研究结果提高了我们对内源性GDNF如何影响纹状体多巴胺系统功能的认识.
    Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson\'s disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓背角抑制对感觉输入的处理至关重要,其损害导致机械性异常性疼痛。这种减少的抑制作用是如何发生的,以及它的恢复是否减轻了异常疼痛,人们知之甚少。这里,我们表明,抑制性音调丧失的关键步骤是抑制性小白蛋白(PV)表达神经元(PVN)的放电模式的变化。我们的结果表明,PV,一种钙结合蛋白,通过使PVN能够维持高频补音放电模式来控制PVN的放电活动。神经损伤后,PVN过渡到适应性放电并降低其PV表达。有趣的是,降低PV对于机械性异常疼痛的发展和PVN向适应性放电的过渡是必要和充分的。放电模式的这种转变是由于钙激活钾(SK)通道的募集,并在慢性疼痛期间阻断它们恢复正常的滋补放电并缓解慢性疼痛。我们的发现表明,PV对于控制PVN的放电模式和预防异常性疼痛至关重要。开发操纵这些机制的方法可能会导致缓解慢性疼痛的不同策略。
    Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑血管系统的神经元调节是依赖于脑血流量(CBF)变化的脑成像技术的基础。然而,解释这些信号需要理解它们的神经相关性。小白蛋白(PV)中间神经元在网络活动中至关重要,但是它们对CBF的影响还没有完全理解。光遗传学研究表明,刺激皮层PV中间神经元诱导不同的CBF反应,包括快速增长,减少,和较慢的延迟增长。为了澄清这种关系,我们测量了清醒小鼠体感皮层中在诱发和持续静息状态活动期间,对表达视紫红质-2的PV中间神经元的光遗传学刺激的血流动力学和神经反应。双光子显微镜(2P)Ca2成像显示PV阳性(PV)细胞的强烈激活和PV阴性(PV)细胞的抑制。长时间的PV+细胞刺激导致延迟,CBF缓慢增加,类似于CBF对胡须刺激的反应中的第二峰。2P血管直径测量显示,PV+细胞刺激诱导浅层中的快速动脉血管舒张,并在较深层中延迟血管舒张。正在进行的活动记录表明,PV和PV细胞群均可调节静止时的动脉波动,与PV+电池具有更大的影响。这些发现表明,PV中间神经元产生复杂的深度依赖性血管反应,以深层缓慢的血管变化为主。
    Neuronal regulation of cerebrovasculature underlies brain imaging techniques reliant on cerebral blood flow (CBF) changes. However, interpreting these signals requires understanding their neural correlates. Parvalbumin (PV) interneurons are crucial in network activity, but their impact on CBF is not fully understood. Optogenetic studies show that stimulating cortical PV interneurons induces diverse CBF responses, including rapid increases, decreases, and slower delayed increases. To clarify this relationship, we measured hemodynamic and neural responses to optogenetic stimulation of PV interneurons expressing Channelrhodopsin-2 during evoked and ongoing resting-state activity in the somatosensory cortex of awake mice. Two-photon microscopy (2P) Ca2+ imaging showed robust activation of PV-positive (PV+) cells and inhibition of PV-negative (PV-) cells. Prolonged PV+ cell stimulation led to a delayed, slow CBF increase, resembling a secondary peak in the CBF response to whisker stimulation. 2P vessel diameter measurements revealed that PV+ cell stimulation induced rapid arterial vasodilation in superficial layers and delayed vasodilation in deeper layers. Ongoing activity recordings indicated that both PV+ and PV- cell populations modulate arterial fluctuations at rest, with PV+ cells having a greater impact. These findings show that PV interneurons generate a complex depth-dependent vascular response, dominated by slow vascular changes in deeper layers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表达小白蛋白的抑制性神经元(PVNs)稳定皮层网络活动,产生伽马节律,并调节经验依赖的可塑性。这里,我们观察到PVNs的激活或失活的功能就像鼠标听觉皮层(ACtx)的音量旋钮,在20dB范围内向上或向下调整声级的神经和行为分类。PVN响度调整为“粘性”,这样一次40HzPVN刺激可持续抑制ACTX声音响应,增强前馈抑制,和对响度的行为脱敏小鼠。感觉敏感是自闭症的主要特征,老化,和周围神经病变,提示我们询问PVN刺激是否可以使ACtx多动症的小鼠持续脱敏,PVN功能减退,和由耳蜗感觉神经性损伤引起的响度超敏反应。我们发现,一次16分钟的40HzPVN刺激会话恢复正常的响度感知一周,显示由不可逆的外周损伤引发的感知缺陷可以通过有针对性的皮质回路干预来逆转。
    Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were \"sticky\", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管广泛使用联合抗逆转录病毒疗法(cART),仍有一部分个体表现出广泛称为HIV相关神经认知障碍(HAND)的认知障碍.有趣的是,即使在存在cART的情况下,HIV感染的细胞也会持续释放HIV-1蛋白Tat。建议持续暴露于Tat会增加神经炎症和神经毒性。体外证据表明,基质金属蛋白酶(MMPs)是Tat诱导的神经炎分子之一,已知它们会破坏称为神经周网(PNN)的专门的神经元细胞外基质结构。PNN主要围绕小清蛋白中间神经元,并有助于缓冲这些细胞免受氧化应激并独立增加其兴奋性。为了更好地理解短期接触Tat之间的联系,神经炎症,和PNN,我们探讨了Tat对神经胶质细胞和神经元的直接作用。在这里,我们报告说,在混合胶质培养中,Tat直接增加促炎分子的表达,包括MMP-9。此外,小鼠海马直接注射Tat蛋白可增加星形胶质细胞和小胶质细胞标志物以及MMP-9的表达。PNN的数量在Tat暴露后减少,随后海马小清蛋白表达神经元数量减少。在年长的老鼠中,Tat诱导促炎分子的基因表达显着增加,包括神经胶质增生的标志物,MMP和补体系统蛋白。一起来看,这些数据支持Tat对神经胶质来源的MMP表达的直接影响,随后影响PNN和神经元健康,年龄较大的小鼠更容易受到Tat诱导的炎症。
    Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    即使是在发育关键时期的短暂听力损失也会导致时间和频谱感知的长期缺陷。这些感知缺陷与人类的语音感知相关。在沙鼠中,这些听力损失引起的知觉缺陷与听觉皮层中离子型GABAA和代谢型GABAB受体介导的突触抑制的减少有关,但是大多数关于关键时期可塑性的研究都集中在GABAA受体上。因此,我们开发了病毒载体来表达会上调沙鼠突触后抑制性受体亚基(GABAA,Gabra1;GABAB,Gabbr1b)在锥体神经元中,和在表达小白蛋白的中间神经元中突触前介导GABA合成(GAD65)的酶。在听觉临界期期间,发展性听力损失的短暂时期显着损害了两个听觉任务的感知性能:幅度调制深度检测和频谱调制深度检测。然后,我们测试了每个向量恢复这些听觉任务的感知性能的能力。虽然两种GABA受体载体都增加了皮质抑制性突触后电位的幅度,只有病毒表达突触后GABAB受体将感知阈值提高到对照水平.同样,突触前GAD65表达改善了光谱调制检测的感知性能。这些发现表明,恢复听觉感知任务的表现取决于听觉皮层小清蛋白到锥体突触的GABAB受体依赖性传递,并指出了发育感觉障碍的潜在治疗目标。
    Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:丘脑系统在全身麻醉药诱导的可逆性无意识的调节中起着关键作用,尤其是全身麻醉(GA)的唤醒阶段。但是丘脑在GA引起的意识丧失(LOC)中的功能鲜为人知。丘脑网状核(TRN)是丘脑中唯一的GABA能神经元组成的核,它由表达小白蛋白(PV)和生长抑素(SST)的GABA能神经元组成。前段TRN(aTRN)表示参加麻醉诱导,但角色仍不清楚。本研究旨在揭示aTRN在异丙酚和异氟醚麻醉中的作用。
    方法:我们首先设置c-Fos应变监测异丙酚和异氟醚麻醉期间aTRNPV和aTRNSST神经元的活性变化。随后,光遗传学工具用于激活aTRNPV和aTRNSST神经元,以阐明aTRNPV和aTRNSST神经元在异丙酚和异氟烷麻醉中的作用.记录并分析脑电图(EEG)记录和行为测试。最后,应用aTRNPV神经元的化学遗传激活来确认aTRN神经元在丙泊酚和异氟烷麻醉中的功能。
    结果:c-Fos应变显示,在异丙酚和异氟醚麻醉的LOC期间,aTRNPV和aTRNSST神经元均被激活。光遗传学激活的aTRNPV和aTRNSST神经元促进异氟烷诱导并延迟丙泊酚和异氟烷麻醉后的意识恢复(ROC),同时,aTRNPV神经元的化学遗传激活表现出类似的作用。此外,在丙泊酚和异氟烷GA期间,aTRN神经元的光遗传学和化学遗传激活导致累积的爆发抑制率(BSR),尽管它们对EEG频率的功率分布表现出不同的影响。
    结论:我们的发现表明,aTRNGABA能神经元在促进异丙酚和异氟烷介导的GA的诱导中起关键作用。
    BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia.
    METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia.
    RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency.
    CONCLUSIONS: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号