parvalbumin

小白蛋白
  • 文章类型: Journal Article
    Two fish parvalbumin models were established to study relationships among matrix effect, extractability, and thermostability during in vitro immunodetection using two parvalbumin-specific monoclonal antibodies (3E1 and PARV19). Our results illustrated that matrix-induced thermal instability of parvalbumin was due mainly to physical (hydrophobic effect) and chemical (thiol-disulfide interchange) interactions. The addition of sodium dodecyl sulfate (SDS, surfactant), β-mercaptoethanol (reducing agent) or ethylenediaminetetraacetic acid (EDTA, metal chelator) during sample preparation could not only increase the extractability of parvalbumin but also enhanced its immunodetection. Our findings demonstrated excess EDTA completely chelated Ca2+ in parvalbumin and rendered it undetectable using PARV19 (a Ca2+-dependent antibody). Overall, our resulted showed that matrix effect on in vitro analyte quantification cannot be underestimated. Any false negative or positive results could lead to severe or life-threatening allergic reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Parvalbumin (PA) is a classical EF-hand calcium-binding protein of muscle, neuronal, and other tissues, and a major fish allergen. Although certain apo-PAs lack tertiary structure, functional implications of that feature and its structural prerequisites remain unclear. In a search for unstable PAs, we probed conformational stability of parvalbumin β-1 from coho salmon (csPA), a cold water fish species, using circular dichroism, scanning calorimetry, hydrophobic probe fluorescence, limited proteolysis, chemical crosslinking and dynamic light scattering techniques. Apo-csPA is shown to be mainly monomeric protein with markedly disorganized secondary structure and lack of rigid tertiary structure. Examination of per-residue propensity for intrinsic disorder in the PA groups with either folded or unfolded apo-form using the average PONDR® VSL2P profiles revealed that the N-terminal region that includes α-helix A, AB-loop and N-terminal half of α-helix B is predicted to be less ordered in PAs with disordered apo-state. Application of the structural criteria developed for discrimination of disordered PAs indicate that the latter comprise about 16-19% of all PAs. We show that structural instability of apo-β-PA serves as a hallmark of elevated calcium affinity of the protein. Therefore, the successful predictions of unstable apo-PAs might facilitate search for PAs with maximal calcium affinity and possibly serving as calcium sensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号