pancreatic β-cells

胰腺 β 细胞
  • 文章类型: Journal Article
    COVID-19大流行揭示了SARS-CoV-2感染与糖尿病之间的双向关系。现有证据强烈表明,高血糖是严重COVID-19的独立危险因素,导致发病率和死亡率增加。相反,最近的研究报道了SARS-CoV-2感染后的新发糖尿病,提示潜在的病毒对胰腺β细胞的直接攻击。在这次审查中,我们探索高血糖症,糖尿病的标志,可能影响SARS-CoV-2进入胰腺β细胞和辅助蛋白。我们研究了病毒如何进入和操纵这些细胞,重点研究刺突蛋白的作用及其与宿主受体的相互作用。此外,我们分析了与病毒感染有关的内体加工和辅助蛋白的潜在影响.我们的分析表明,胰腺β细胞中高血糖和SARS-CoV-2之间存在复杂的相互作用。了解这些机制可能有助于解锁紧急治疗策略,以减轻COVID-19对糖尿病患者的有害影响,并揭示病毒本身是否可以引发糖尿病发作。
    The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Abelmoschusmanihot(L.)Medic花(AMf)既具有营养价值,又具有抗氧化等生物活性,抗炎,神经保护,心脏保护,和保肝作用.这项研究的目的是检查AMf的三种不同溶剂提取物的潜在影响:超临界CO2萃取提取物,水提取物,和乙醇提取物(AME),关于糖尿病的管理。所有三种提取物均显示出对α-葡萄糖苷酶(IC50=157-261μg/mL)和脂肪酶(IC50=401-577μg/mL)活性的显着抑制作用,同时增强α-淀粉酶活性(200μg/mL时32.4-41.8倍)。此外,所有三种提取物对晚期糖基化终产物的形成均表现出明显的抑制作用,包括Amadori产品(抑制率=15.7-36.6%)和二羰基化合物(抑制率=18.6-28.3%)。在三个摘录中,AME表现出最明显的抑制作用。AME表现出实质性的体外和细胞内抗氧化活性,在高血糖(HG)条件下,并有效降低β细胞中ROS的产生(500μg/mL时135%)。AME还增强了抗氧化酶的活性和基因表达,在HG诱导的β细胞中明显减少。此外,AME在HG条件下保护β细胞活力并维持正常的胰岛素分泌,可能是由于其减少β细胞内氧化应激的能力。这项研究证明了AME在预防和管理糖尿病及其相关并发症方面的潜力。进一步的体内研究对于彻底阐明预防作用及其潜在机制是必要的。
    Abelmoschus manihot (L.) Medic flower (AMf) exhibits both nutritional value and bioactivities such as antioxidative, anti-inflammatory, neuroprotective, cardioprotective, and hepatoprotective effects. The aim of this investigation was to examine the potential impact of three different solvent extracts of AMf: supercritical CO2 extraction extract, water extract, and ethanol extract (AME), on management of diabetes. All three extracts demonstrated significant inhibitory effects on α-glucosidase (IC50 = 157-261 μg/mL) and lipase (IC50 = 401-577 μg/mL) activities while enhancing the α-amylase activity (32.4-41.8 folds at 200 μg/mL). Moreover, all three extracts exhibited notable inhibition of the formation of advanced glycation end-products, including the Amadori products (inhibition rates = 15.7-36.6%) and the dicarbonyl compounds (inhibition rates = 18.6-28.3%). Among the three extracts, AME exhibited the most pronounced inhibitory effect. AME displayed substantial in vitro and intracellular antioxidative activity, and effectively reduced ROS production (135% at 500 μg/mL) in β-cells under hyperglycemic (HG) conditions. AME also enhanced the activity and gene expression of antioxidant enzymes, which were markedly decreased in the HG-induced β-cells. Furthermore, AME protected β-cell viability and maintained normal insulin secretion under HG conditions, likely due to its ability to reduce oxidative stress within β-cells. This study demonstrated the potential of AME in preventing and managing diabetes and its associated complications. Further in vivo research is necessary to thoroughly elucidate the preventive effects and their underlying mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:与2型糖尿病(T2DM)相关的高发病率和死亡率构成了重大的全球卫生挑战。需要开发副作用更少的更有效的抗糖尿病药物。本研究探讨维生素D3联合格列本脲对2型糖尿病大鼠的干预作用,阐明其通过NF-κB通路对胰岛β细胞的影响。
    方法:将24只健康雄性SD大鼠随机分为4组:对照组模型组(MG),格列本脲(GG)组,和格列本脲+维生素D3组(GDG)。高脂高糖饮食和腹腔注射链脲佐菌素诱导T2DM模型后,GG组大鼠口服格列本脲(0.6mg/kg/天),而GDG组的患者在玉米油中同时接受格列本脲(0.6mg/kg/天)和维生素D3(500IU/kg/天),为期8周。测量生化指标,用苏木素和伊红染色观察胰腺组织和胰岛β细胞的组织病理学变化。胰腺核因子κB(NF-κB)的表达,胰岛β细胞,使用TUNEL方法和PCR评估炎性细胞因子。
    结果:根据当前研究的数据,GDG组血浆生化指标呈显著正差异,以及β细胞的表达,NF-κBp65,TNF-α,IL-1β,INF-γ,和Fas,GG组和CG组比较(P<0.05)。
    结论:结果提示维生素D通过抑制NF-κB信号通路改善胰岛β细胞功能,对T2DM具有有益作用。因此,建议补充维生素D,当与抗糖尿病药物一起使用时,可以更有效地预防和治疗T2DM。
    OBJECTIVE: The high morbidity and mortality associated with type 2 diabetes mellitus (T2DM) pose a significant global health challenge, necessitating the development of more efficient anti-diabetic drugs with fewer side effects. This study investigated the intervention of vitamin D3 combined with glibenclamide in rats with T2DM to elucidate its effects on pancreatic β-cells through the NF-κB pathway.
    METHODS: Twenty-four healthy male Sprague-Dawley (SD) rats were randomly assigned to four groups: the control group (CG), the model group (MG), the glibenclamide group (GG), and the glibenclamide + vitamin D3 group (GDG). After inducing the T2DM model using high-fat and high-sugar diet and intraperitoneal injection of streptozotocin, the rats in the GG group were administered glibenclamide orally (0.6 mg/kg/day), while those in the GDG group received both glibenclamide (0.6 mg/kg/day) and vitamin D3 (500 IU/kg/day) in corn oil for a duration of 8 weeks. Biochemical indices were measured, and histopathological changes in pancreatic tissue and islet β cells were observed using hematoxylin and eosin staining. The expression of pancreatic nuclear factor κB (NF-κB), islet β-cells, and inflammatory cytokines were assessed using the TUNEL method and PCR.
    RESULTS: According to the data from this current study, the GDG group showed significant positive differences in plasma biochemical indices, as well as in the expression of β cells, NF-κB p65, TNF-α, IL-1β, INF-γ, and Fas, compared to the GG and CG groups (P < 0.05).
    CONCLUSIONS: The results suggest that vitamin D has beneficial effects on T2DM by improving the functions of islet β cells through inhibition of the NF-κB signaling pathway. Therefore, it is suggested that vitamin D supplementation, when used alongside antidiabetic drugs, may more effectively prevent and treat T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非羧化骨钙蛋白(ucOC)是成骨细胞分泌的激素,在矿化过程中增强骨骼,并且是正在进行的骨骼形成的生物标志物。它还通过刺激胰腺β细胞分泌胰岛素来调节葡萄糖稳态。然而,其对高血糖糖尿病患者β细胞的影响尚不清楚.本研究的目的是研究高糖条件下ucOC对维持β细胞胰岛素分泌的影响。我们假设高血糖会增强对ucOC刺激的胰岛素分泌。使用INS-1细胞,我们做了胰岛素分泌实验,细胞内钙记录,和RT-qPCR来确定ucOC对葡萄糖刺激的胰岛素分泌(GSIS)相关基因的影响。结果表明,与较低的葡萄糖水平相比,在高血糖条件下,ucOC显着增加了胰岛素分泌。高葡萄糖条件也增强了ucOC对钙信号的影响,增强胰岛素分泌。细胞内钙的增加是由于通过电压依赖性钙通道(VDCC)从细胞外空间流入。有趣的是,用GPRC6A阻断剂NPS-2143处理细胞,未能消除钙信号。与在标准培养条件(200mg/dL)下的细胞相比,在高葡萄糖条件(450mg/dL)下未羧化骨钙蛋白上调GSIS相关基因的表达。总之,高血糖通过打开VDCCs和上调GSIS基因增强ucOC诱导的β细胞胰岛素分泌.这些发现提供了一个更好的理解ucOC的机制在糖尿病状态,并可能导致替代治疗刺激胰岛素分泌。
    Uncarboxylated osteocalcin (ucOC) is a hormone secreted by osteoblasts that strengthens bone during mineralization and is a biomarker for ongoing bone formation. It also regulates glucose homeostasis by stimulating insulin secretion from pancreatic β-cells. However, its effect on β-cells under hyperglycemic diabetic conditions is unclear. The objective of this study was to investigate ucOC\'s effect on insulin secretion in β-cells maintained under high glucose conditions. We hypothesized that hyperglycemia potentiates insulin secretion in response to ucOC stimulation. Using INS-1 cells, we performed insulin secretion experiments, intracellular calcium recordings, and RT-qPCR to determine ucOC\'s effect on glucose-stimulated insulin secretion (GSIS)-related genes. The results reveal that ucOC significantly increased insulin secretion under hyperglycemic conditions compared to lower glucose levels. High glucose conditions also potentiated the effect of ucOC on calcium signals, which enhanced insulin secretion. The increase in intracellular calcium was due to an influx from the extracellular space via voltage-dependent calcium channels (VDCCs). Interestingly, the treatment of cells with NPS-2143, a GPRC6A blocker, failed to abolish the calcium signals. Uncarboxylated osteocalcin upregulated the expression of GSIS-related genes under high glucose conditions (450 mg/dL) compared to cells under standard culture conditions (200 mg/dL). In conclusion, hyperglycemia potentiates ucOC-induced insulin secretion in β-cells by opening VDCCs and upregulating GSIS genes. These findings provide a better understanding of ucOC\'s mechanism in the diabetic state and could lead to alternative treatments to stimulate insulin secretion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文探讨了Teplizumab在T1D中的免疫调节潜力及其对胰腺β细胞功能的影响。以产生胰岛素的β细胞的自身免疫破坏为特征,T1D的管理涉及通过外源性胰岛素维持血糖控制。Teplizumab,一种针对CD3抗原的人源化单克隆抗体,已显示出延迟T1D发作和保留残留β细胞功能的希望。审查采用了叙事方法,通过细致的文献检索,从不同的临床试验和研究中综合证据。它仔细检查了Teplizumab的作用机制,包括其对自身反应性CD8+T细胞和调节性T细胞的影响,提供对其免疫途径的见解。各种试验的综合结果证明了Teplizumab在保持C肽水平和减少外源性胰岛素需求方面的功效。特别是在最近发作的T1D中。考虑到Teplizumab的现实世界含义,这篇论文讨论了潜在的障碍,包括副作用,患者选择标准,和后勤挑战。它还强调探索联合疗法和个性化治疗策略,以最大限度地发挥Teplizumab的益处。这篇综述为Teplizumab在T1D管理中的临床意义和未来方向提供了一个微妙的视角。将理论理解与实践考虑联系起来。
    This review explores the immunomodulatory potential of Teplizumab and its impact on pancreatic β-cell function in T1D. Characterized by the autoimmune destruction of insulin-producing beta cells, T1D\'s management involves maintaining glycemic control through exogenous insulin. Teplizumab, a humanized monoclonal antibody targeting the CD3 antigen, has shown promise in delaying T1D onset and preserving residual β-cell function. The review employs a narrative approach, synthesizing evidence from diverse clinical trials and studies gathered through a meticulous literature search. It scrutinizes Teplizumab\'s mechanisms of action, including its influence on autoreactive CD8 + T cells and regulatory T cells, offering insights into its immunological pathways. The synthesis of findings from various trials demonstrates Teplizumab\'s efficacy in preserving C-peptide levels and reducing exogenous insulin requirements, particularly in recent-onset T1D. Considering Teplizumab\'s real-world implications, the paper addresses potential obstacles, including side effects, patient selection criteria, and logistical challenges. It also emphasizes exploring combination therapies and personalized treatment strategies to maximize Teplizumab\'s benefits. The review contributes a nuanced perspective on Teplizumab\'s clinical implications and future directions in T1D management, bridging theoretical understanding with practical considerations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知糖皮质激素(GC)通过几种机制刺激胰腺β(β)细胞凋亡,包括氧化应激。我们先前的研究表明,通过减少谷胱甘肽S-转移酶P1(GSTP1),地塞米松诱导的胰腺β细胞凋亡增加,这是一种抗氧化酶。伊马替尼,这是一种酪氨酸激酶抑制剂,还发挥抗氧化作用。这项研究旨在验证我们的假设,即伊马替尼通过增加GSTP1表达和减少氧化应激来预防地塞米松诱导的胰腺β细胞凋亡。我们的结果表明,与对照组相比,地塞米松显着增加INS-1细胞的凋亡,伊马替尼显著降低地塞米松诱导的INS-1细胞凋亡。此外,与对照组相比,地塞米松显着增加了INS-1细胞中超氧化物的产生;然而,伊马替尼,当与地塞米松合用时,显著降低INS-1细胞中超氧化物的产生。地塞米松显著降低GSTP1、p-ERK1/2和BCL2蛋白表达,但显著增加了p-JNK,INS-1细胞中的p-p38和BAX蛋白表达均与对照相比。重要的是,伊马替尼显着改善地塞米松对GSTP1,p-ERK1/2,p-JNK表达的影响,p-p38MAPK,巴克斯,和BCL2。此外-6-(7-硝基-2,1,3-苯并恶二唑-4-基硫基)己醇(NBDHEX),这是一种GSTP1抑制剂,中和伊马替尼对地塞米松诱导的胰岛β细胞凋亡的保护作用。总之,伊马替尼通过增加GSTP1表达和降低氧化应激降低地塞米松诱导的胰岛β细胞凋亡。
    Glucocorticoids (GCs) are known to stimulate pancreatic beta (β)-cell apoptosis via several mechanisms, including oxidative stress. Our previous study suggested an increase in dexamethasone-induced pancreatic β-cell apoptosis via a reduction of glutathione S-transferase P1 (GSTP1), which is an antioxidant enzyme. Imatinib, which is a tyrosine kinase inhibitor, also exerts antioxidant effect. This study aims to test our hypothesis that imatinib would prevent pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Our results revealed that dexamethasone significantly increased apoptosis in INS-1 cells when compared to the control, and that imatinib significantly decreased INS-1 cell apoptosis induced by dexamethasone. Moreover, dexamethasone significantly increased superoxide production in INS-1 cells when compared to the control; however, imatinib, when combined with dexamethasone, significantly reduced superoxide production in INS-1 cells. Dexamethasone significantly decreased GSTP1, p-ERK1/2, and BCL2 protein expression, but significantly increased p-JNK, p-p38, and BAX protein expression in INS-1 cells-all compared to control. Importantly, imatinib significantly ameliorated the effect of dexamethasone on the expression of GSTP1, p-ERK1/2, p-JNK, p-p38 MAPK, BAX, and BCL2. Furthermore-6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), which is a GSTP1 inhibitor, neutralized the protective effect of imatinib against pancreatic β-cell apoptosis induced by dexamethasone. In conclusion, imatinib decreases pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们询问线粒体的急性氧化还原信号是否与胰腺β细胞在低葡萄糖时的脂肪酸(FA)刺激的胰岛素分泌(FASIS)同时存在。我们显示FAβ氧化产生超氧化物/H2O2,提供:i)线粒体到质膜的氧化还原信号,关闭KATP通道与升高的ATP协同作用(在葡萄糖刺激的胰岛素分泌时替代NADPH-氧化酶-4介导的H2O2信号传导);ii)氧化还原敏感性磷脂酶iPLA2γ/PNPLA8的激活,切割线粒体FAs,使代谢型GPR40受体增强胰岛素分泌(IS)。在空腹血糖,wt小鼠的棕榈酸刺激IS;棕榈酸,硬脂酸,月桂,油酸,亚油酸,和己酸也在融合胰岛(PI)中,在iPLA2γ/PNPLA8敲除小鼠/PIs中具有抑制的第一阶段。细胞外/胞质H2O2监测显示不依赖敲除的氧化还原信号,被线粒体抗氧化剂SkQ1,依托莫昔尔,CPT1消音,过氧化氢酶过表达,所有抑制FASIS,保持ATP敏感的K+通道开放,和胞质[Ca2+]振荡减少。小鼠中的FASIS是餐后延迟的生理事件。因此记录了FAβ氧化的氧化还原信号,到达质膜,本质上是共同刺激的。
    We asked whether acute redox signaling from mitochondria exists concomitantly to fatty acid- (FA-) stimulated insulin secretion (FASIS) at low glucose by pancreatic β-cells. We show that FA β-oxidation produces superoxide/H2O2, providing: i) mitochondria-to-plasma-membrane redox signaling, closing KATP-channels synergically with elevated ATP (substituting NADPH-oxidase-4-mediated H2O2-signaling upon glucose-stimulated insulin secretion); ii) activation of redox-sensitive phospholipase iPLA2γ/PNPLA8, cleaving mitochondrial FAs, enabling metabotropic GPR40 receptors to amplify insulin secretion (IS). At fasting glucose, palmitic acid stimulated IS in wt mice; palmitic, stearic, lauric, oleic, linoleic, and hexanoic acids also in perifused pancreatic islets (PIs), with suppressed 1st phases in iPLA2γ/PNPLA8-knockout mice/PIs. Extracellular/cytosolic H2O2-monitoring indicated knockout-independent redox signals, blocked by mitochondrial antioxidant SkQ1, etomoxir, CPT1 silencing, and catalase overexpression, all inhibiting FASIS, keeping ATP-sensitive K+-channels open, and diminishing cytosolic [Ca2+]-oscillations. FASIS in mice was a postprandially delayed physiological event. Redox signals of FA β-oxidation are thus documented, reaching the plasma membrane, essentially co-stimulating IS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    早期的2型糖尿病(T2D)的发展,胰岛素抵抗和营养超负荷引起的代谢应激引起β细胞过度刺激。在这里,我们总结了最近的研究,探索了细胞内Ca2+浓度增加的前提([Ca2+]i),由β细胞持续的代谢刺激引起,通过对β细胞功能产生不利影响而导致β细胞功能障碍和衰竭,结构,和身份。这篇小型评论建立在最近的几篇评论的基础上,这些评论还描述了过量的[Ca2]i如何损害β细胞功能。
    Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾上腺素影响胰腺β细胞的功能,主要通过其质膜上的α2A-肾上腺素能受体(α2A-AR)。以前的研究表明,肾上腺素短暂抑制胰岛素分泌,而长期暴露诱导其代偿分泌。尽管如此,肾上腺素诱导的α2A-AR信号对胰岛β细胞存活和功能的影响,特别是在从持续的肾上腺素刺激中去除后重新编程的影响,仍然难以捉摸。在本研究中,我们应用了小鼠胰岛素瘤细胞系MIN6,高浓度肾上腺素孵育3天,标准孵育2天,探索细胞功能和活动,并分析了相关的调控途径。结果表明,慢性肾上腺素孵育导致α2A-AR脱敏并增强胰岛素分泌。慢性肾上腺素暴露后,发现对接的胰岛素颗粒和Syntaxin-2受损的数量增加。生长曲线和细胞周期分析显示细胞增殖受到抑制。转录组分析显示内质网应激(ER应激)和氧化应激,例如BiP的存在,CHOP,IRE1、ATF4和XBP,影响细胞内质网功能和存活,随着UCP2,OPA1,粉红色,和PRKN,与线粒体功能障碍有关。因此,我们得出结论,慢性暴露于肾上腺素诱导α2A-AR脱敏并导致ER和氧化应激,损伤蛋白质加工和线粒体功能,导致胰腺β细胞分泌功能和细胞命运的改变。
    Epinephrine influences the function of pancreatic β-cells, primarily through the α2A-adrenergic receptor (α2A-AR) on their plasma membrane. Previous studies indicate that epinephrine transiently suppresses insulin secretion, whereas prolonged exposure induces its compensatory secretion. Nonetheless, the impact of epinephrine-induced α2A-AR signaling on the survival and function of pancreatic β-cells, particularly the impact of reprogramming after their removal from sustained epinephrine stimulation, remains elusive. In the present study, we applied MIN6, a murine insulinoma cell line, with 3 days of high concentration epinephrine incubation and 2 days of standard incubation, explored cell function and activity, and analyzed relevant regulatory pathways. The results showed that chronic epinephrine incubation led to the desensitization of α2A-AR and enhanced insulin secretion. An increased number of docked insulin granules and impaired Syntaxin-2 was found after chronic epinephrine exposure. Growth curve and cell cycle analyses showed the inhibition of cell proliferation. Transcriptome analysis showed the occurrence of endoplasmic reticulum stress (ER stress) and oxidative stress, such as the presence of BiP, CHOP, IRE1, ATF4, and XBP, affecting cellular endoplasmic reticulum function and survival, along with UCP2, OPA1, PINK, and PRKN, associated with mitochondrial dysfunction. Consequently, we conclude that chronic exposure to epinephrine induces α2A-AR desensitization and leads to ER and oxidative stress, impairing protein processing and mitochondrial function, leading to modified pancreatic β-cell secretory function and cell fate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病是一种损害新陈代谢的慢性疾病,其患病率已达到全球流行比例。大多数受影响的人患有2型糖尿病(T2DM),这是由胰腺内分泌胰岛细胞的数量或功能下降引起的,特别是β-细胞释放足够量的胰岛素以克服代谢组织的任何胰岛素抗性。遗传和表观遗传因素是T2DM的主要贡献者。表观遗传修饰剂,组蛋白脱乙酰酶(HDAC),是从组蛋白中去除乙酰基的酶,在各种分子过程中发挥重要作用,包括胰腺细胞的命运,胰岛素释放,胰岛素生产,胰岛素信号,和葡萄糖代谢。HDAC还管理与糖尿病相关的其他监管过程,如氧化应激,炎症,凋亡,和纤维化,通过网络和功能分析揭示。这篇综述解释了目前对HDAC在糖尿病病理生理学中的功能的理解。各种HDAC抑制剂(HDACi)的抑制作用,以及它们作为T2DM生物标志物和可能的治疗靶点的功能重要性。虽然它们在T2DM中的作用仍在显现,更好地了解HDACi的作用可能与改善胰岛素敏感性有关,保护β细胞并减少T2DM相关并发症,在其他人中。
    Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号