nanoenzymes

纳米酶
  • 文章类型: Journal Article
    阿尔茨海默病(AD)仍然是治疗最具挑战性的神经退行性疾病之一,氧化应激在其病理中起着重要作用。纳米酶技术的最新进展提供了一种有希望的方法来减轻这种氧化损伤。纳米酶,以其独特的酶模拟活性,有效清除活性氧并减少氧化应激,从而提供神经保护作用。这篇综述深入研究了AD的潜在机制,关注氧化应激及其对疾病进展的影响。我们探索纳米酶应用于AD治疗的最新进展,强调它们的多功能能力和靶向递送至淀粉样蛋白-β斑块的潜力。尽管前景令人兴奋,纳米酶的临床转化面临几个挑战,包括大脑靶向的困难,一致的质量生产,确保安全和生物相容性。我们将详细讨论这些限制,强调需要严格的评估和标准化的协议。本文旨在全面概述纳米酶在AD中的研究现状,阐明了有效临床应用道路上的机遇和障碍。
    Alzheimer\'s disease (AD) remains one of the most challenging neurodegenerative disorders to treat, with oxidative stress playing a significant role in its pathology. Recent advancements in nanoenzymes technology offer a promising approach to mitigate this oxidative damage. Nanoenzymes, with their unique enzyme-mimicking activities, effectively scavenge reactive oxygen species and reduce oxidative stress, thereby providing neuroprotective effects. This review delves into the underlying mechanisms of AD, focusing on oxidative stress and its impact on disease progression. We explore the latest developments in nanoenzymes applications for AD treatment, highlighting their multifunctional capabilities and potential for targeted delivery to amyloid-beta plaques. Despite the exciting prospects, the clinical translation of nanoenzymes faces several challenges, including difficulties in brain targeting, consistent quality production, and ensuring safety and biocompatibility. We discuss these limitations in detail, emphasizing the need for rigorous evaluation and standardized protocols. This paper aims to provide a comprehensive overview of the current state of nanoenzymes research in AD, shedding light on both the opportunities and obstacles in the path towards effective clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)是一种多面神经发育障碍,具有相当大的异质性,其中过度产生的活性氧(ROS)诱导级联的病理变化,包括细胞凋亡和炎症反应。鉴于ASD的病因复杂,ASD没有有效的治疗方法。在这项工作中,一种特定的催化纳米酶,六氰合铁酸钙(III)纳米催化剂(CaHNCs),是为有效的ASD治疗而设计和设计的。CaHNCs可以模拟包括超氧化物歧化酶在内的天然酶的活性,过氧化物酶,过氧化氢酶,和谷胱甘肽过氧化物酶,减轻细胞内过量的ROS并调节氧化还原平衡。这些CaHNCs调节线粒体膜电位,升高B细胞淋巴瘤-2水平,抑制促凋亡蛋白,包括Caspase-3和B细胞淋巴瘤-2相关的X,从而有效减少细胞凋亡。重要的是,CaHNCs通过上调抗炎细胞因子白细胞介素-10和下调促炎因子来缓解炎症,导致小胶质细胞和星形胶质细胞的激活减弱,并随后减少神经炎症。随后,CaHNC增强了社交能力,降低焦虑水平,改善重复行为,并通过炎症调节和凋亡抑制改善ASD动物模型的学习和记忆。管理和预防ASD的CaHNC代表了自闭症治疗的范式转变,为神经系统疾病的临床干预提供了替代但有效的方法。
    Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder with considerable heterogeneity, in which over-generated reactive oxygen species (ROS) induce a cascade of pathological changes, including cellular apoptosis and inflammatory responses. Given the complex etiology of ASD, no effective treatment is available for ASD. In this work, a specific catalytic nanoenzyme, calcium hexacyanoferrate (III) nanocatalysts (CaH NCs), is designed and engineered for efficient ASD treatment. CaH NCs can mimic the activities of natural enzymes including superoxide dismutase, peroxidase, catalase, and glutathione peroxidase, which mitigates intracellular excessive ROS and regulates redox equilibrium. These CaH NCs modulate mitochondrial membrane potential, elevate B-cell lymphoma-2 levels, and suppress pro-apoptotic proteins, including Caspase-3 and B-cell lymphoma-2-associated X, thus effectively reducing cellular apoptosis. Importantly, CaH NCs alleviate inflammation by upregulating anti-inflammatory cytokine interleukin-10 and downregulating pro-inflammatory factors, resulting in attenuated activation of microglial and astrocytic and subsequent reduction in neuroinflammation. Subsequently, CaH NCs enhance social abilities, decrease anxiety levels, ameliorate repetitive behaviors, and improve learning and memory in ASD animal models through inflammation regulation and apoptosis inhibition. The CaH NCs in managing and preventing ASD represents a paradigm shift in autism treatment, paving the alternative but efficient way for clinical interventions in neurological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多巴胺(DA),抗坏血酸(AA),尿酸(UA)是至关重要的神经化学物质,它们的异常水平与各种神经系统疾病有关。虽然已经开发了用于检测它们的电极,实现体内应用所需的灵敏度仍然是一个挑战。在这项研究中,我们提出了一种合成Au24Cd纳米酶(ACNE),显着增强金属电极的电化学性能。与银微电极相比,ACNE修饰的电极的阻抗显着降低了10倍。此外,我们使用五种电化学检测方法验证了它们优异的电催化活性和灵敏度,包括循环伏安法,差分脉冲伏安法,方波脉冲伏安法,正常脉冲伏安法,和线性扫描伏安法。重要的是,用ACNE修饰的金微电极(AuMEs)的稳定性得到了显着改善,与AuME相比,表现出30倍的增强。这种改进的性能表明ACNE功能化对于开发具有增强的灵敏度和稳定性的用于检测小分子的微生物传感器具有巨大的前景。
    Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在肿瘤治疗中,纳米酶在正常组织中的沉积和引起潜在的副作用是不可避免的。这里,我们设计了一个智能的仿生纳米酶载体平台(MSC智能),通过将Affibody-Notch(核心)-VP64-GAL4/UAS-HSV-TK人工信号通路引入间充质干细胞(MSC),使载体平台具有“智慧”。这种智能纳米酶载体平台区别于传统的靶向肿瘤微环境或增强与肿瘤的亲和力,具有肿瘤信号识别能力的MSCintelligent,使MSCsmart能够自主区分肿瘤和正常组织细胞并反馈指令。在这项研究中,MSCintelligent在识别Her2(+)肿瘤后,可通过人工信号通路将肿瘤信号转化为HSV-TK指令。随后,合成的HSV-TK可以在更昔洛韦的介导下智能破坏MSCs,并释放预载的Cu/Fe纳米晶团簇,以准确杀死肿瘤。同时,没有识别肿瘤的MSCsintelligent不会启动HSV-TK指令,因此对GCV无反应并阻断正常组织中纳米酶的释放。因此,MSC智能是第一个智能仿生纳米酶载体平台,这代表了一种新的仿生纳米酶靶向模式。
    In tumor treatment, the deposition of nanoenzymes in normal tissues and cause potential side effects are unavoidable. Here, we designed an intelligent biomimetic nanoenzymes carrier platform (MSCintelligent) that endows the carrier platform with \"wisdom\" by introducing Affibody-Notch(core)-VP64-GAL4/UAS-HSV-TK artificial signal pathways to mesenchymal stem cells (MSCs). This intelligent nanoenzymes carrier platform is distinguished from the traditional targeting tumor microenvironment or enhancing affinity with tumor, which endue MSCintelligent with tumor signal recognition capacity, so that MSCintelligent can autonomously distinguish tumor from normal tissue cells and feedback edited instructions. In this study, MSCintelligent can convert tumor signals into HSV-TK instructions through artificial signal pathway after recognizing Her2 (+) tumor. Subsequently, the synthesized HSV-TK can rupture MSCintelligent under the mediation of ganciclovir, and release the preloaded Cu/Fe nanocrystal clusters to kill the tumor accurately. Meanwhile, MSCintelligent without recognizing tumors will not initiate the HSV-TK instructions, thus being unresponsive to GCV and blocking the release of nanoenzymes in normal tissues. Consequently, MSCintelligent is the first intelligent biomimetic nanoenzymes carrier platform, which represents a new biomimetic nanoenzymes targeting mode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乳腺癌和卵巢癌,尽管接受了化疗和手术治疗,存活率最低。正在进行使用纳米酶/纳米酶进行卵巢癌诊断和治疗的实验阶段,相应地,目前治疗乳腺癌的治疗方法有很多不良副作用,这就是为什么研究人员和科学家正在寻找副作用较小的新策略的原因。纳米酶具有内在的类酶活性,并且由于易于储存而可以减少天然存在的酶的缺点,高稳定性,更便宜,和提高效率。在这次审查中,我们已经讨论了纳米酶用于诊断和治疗乳腺癌和卵巢癌的各种方法。对于乳腺癌,纳米酶及其多酶特性可以控制细胞或组织中活性氧(ROS)的水平,例如,氧化酶(OXD)和过氧化物酶(POD)活性可用于产生ROS,过氧化氢酶(CAT)或超氧化物歧化酶(SOD)活性可以清除ROS。在卵巢癌的情况下,最常见的是研究纳米二氧化硅,并且当叶酸与纳米氧化铈结合时,还有其他优点,例如抑制β-半乳糖苷酶。纳米载体还用于递送在癌症治疗中有效的小干扰RNA。研究表明,氧化铁纳米颗粒正积极用于药物输送,类似地,铁蛋白载体用于递送纳米酶。缺氧是导致卵巢癌的主要因素,因此,基于MnO2的纳米酶被用作治疗。对于癌症诊断和筛查,纳米酶被用于癌症诊断和筛查的声动力学癌症治疗,而生物医学成像和叶酸金颗粒也被用于图像引导治疗。已经开发了纳米酶生物传感器来检测卵巢癌。这篇综述文章总结了基于纳米酶的诊断和治疗方法对乳腺癌和卵巢癌的详细见解。
    Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酶在生化反应中起着至关重要的作用,但是它们固有的结构不稳定性限制了它们在工业过程中的表现。相比之下,淀粉样结构,以其非凡的稳定性而闻名,正在成为合成催化的有希望的候选者。本文探讨了由短肽形成的金属装饰纳米酶的发展,受pr病毒样领域的启发。我们详细介绍了合成短的富含酪氨酸的肽序列的合理设计,专注于它们自组装成稳定的淀粉样蛋白结构,以及它们与生物相关的二价金属阳离子的金属化,例如Cu2+,Ni2+,Co2+和Zn2+。所提供的实验框架为有兴趣探索金属装饰肽的催化潜力的研究人员提供了分步指南。通过弥合淀粉样蛋白结构和催化功能之间的差距,这些杂合分子为开发新的金属酶开辟了新的途径,这些金属酶在不同的化学反应中具有潜在的应用。
    Enzymes play a crucial role in biochemical reactions, but their inherent structural instability limits their performance in industrial processes. In contrast, amyloid structures, known for their exceptional stability, are emerging as promising candidates for synthetic catalysis. This article explores the development of metal-decorated nanozymes formed by short peptides, inspired by prion-like domains. We detail the rational design of synthetic short Tyrosine-rich peptide sequences, focusing on their self-assembly into stable amyloid structures and their metallization with biologically relevant divalent metal cations, such as Cu2+, Ni2+, Co2+ and Zn2+. The provided experimental framework offers a step-by-step guide for researchers interested in exploring the catalytic potential of metal-decorated peptides. By bridging the gap between amyloid structures and catalytic function, these hybrid molecules open new avenues for developing novel metalloenzymes with potential applications in diverse chemical reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前应用于光热治疗(PTT)的贵金属NP的光激发位置主要在NIR-I范围内,低组织穿透性限制了它们的治疗效果。肿瘤微环境(TME)的复杂性使得难以用单一疗法完全抑制肿瘤生长。尽管TME具有高水平的H2O2,但是肿瘤内H2O2含量仍然不足以催化产生足够的氢氧根(‧OH)以实现令人满意的治疗效果。AuPd-GOx-HA(APGH)是从葡萄糖氧化酶(GOx)和透明质酸(HA)修饰的AuPd双金属纳米模铃中获得的,用于光热增强NIR-II区域的肿瘤饥饿和级联催化疗法。AuPd的CAT样活性通过催化H2O2分解为O2来缓解肿瘤缺氧。GOx介导的肿瘤内葡萄糖氧化一方面可以阻断肿瘤生长所必需的能量和营养物质的供应,导致肿瘤饥饿。另一方面,产生的H2O2可以连续地供应局部O2,这也加剧了葡萄糖消耗。双金属AuPd的过氧化物酶样活性可以催化H2O2产生有毒的‧OH自由基,从而实现级联催化治疗。此外,APGH纳米系统的高光热转换效率(η=50.7%)为光热成像引导的光热治疗提供了可能性。细胞和动物实验结果验证了APGH具有良好的生物安全性,肿瘤靶向,和抗癌作用,是一种贵金属纳米治疗系统,整合了葡萄糖饥饿疗法,纳米酶级联催化疗法,和PTT治疗。这项研究为结合外源和内源过程的光热级联催化协同治疗提供了策略。重要性声明:AuPd-GOx-HA级联纳米酶被制备为有效的级联催化治疗剂,增强了葡萄糖消耗,通过APGH样POD活性增加ROS的产生,加剧了肿瘤饥饿并促进了癌细胞凋亡。所设计的系统在NIR-II区域具有良好的光热转换能力,同时实现光热增强催化,PTT,和体外和体内催化/PTT协同治疗。本工作提供了一种设计和开发基于双金属纳米酶级联的催化光热疗法的方法。
    The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杂原子掺杂和相工程是提高纳米酶催化活性的有效途径。氮掺杂的1T/2H混合相MoS2/CuS异质结构纳米片N-1T/2H-MoS2/CuS通过简单的水热方法制备,使用多金属氧酸盐(POM)基金属有机骨架(MOFs)(NENU-5)作为前体和尿素作为氮掺杂试剂。N-1T/2H-MoS2/CuS的XPS光谱(XPS)和拉曼光谱证明了成功的N掺杂。以NENU-5为模板,通过优化反应时间制备1T相含量较高的1T/2H-MoS2/CuS。使用尿素作为氮掺杂剂添加到1T/2H-MoS2/CuS,导致N-1T/2H-MoS2/CuS,1T相的含量从80%增加到84%,缺陷数量更高。N-1T/2H-MoS2/CuS的过氧化物酶活性高于1T/2H-MoS2/CuS,对H2O2的催化效率(Kcat/Km)是1T/2H-MoS2/CuS的两倍。增强的催化活性可能归因于几个原因:(i)在MoS2的S-Mo-S层中的水热过程中尿素的插入,导致层间间距和1T相含量增加,(ii)由尿素分解的N原子取代MoS2中的S原子,导致更多的缺陷和更多的活性位点。据我们所知,在二硫化钼基催化剂中,N-1T/2H-MoS2/CuS纳米片对对苯二酚的比色检测具有最低的检测限(0.16µm)。这项研究为制备高性能纳米酶催化剂提供了一种新的方法。
    Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨基酸的手性识别在药物,medical,和食品科学。这项研究描述了β-环糊精(β-CD)包被的硫量子点(CD-SQDs)的手性传感系统,用于色氨酸(Trp)对映体的选择性荧光识别。CD-SQDs通过简单的组装裂变方法制备,可以通过L/D-Trp和β-CD之间的不同结合能力选择性识别L-Trp。包含L-Trp和CD-SQDs酶模拟物的立体选择性催化导致CD-SQDs的荧光强度增加,其线性响应范围为10至500nM,检测极限为2.3nM。CD-SQD还显示对来自商业复合氨基酸注射液的L-Trp的高选择性。该研究为基于纳米酶催化活性的氨基酸对映体的手性识别提供了一种有效的方法。
    Chiral recognition of amino acid plays a significant role in pharmaceutical, medical, and food science. This study describes a chiral sensing system of β-cyclodextrin (β-CD)-coated sulfur quantum dots (CD-SQDs) for the selective fluorescence recognition of tryptophan (Trp) enantiomers. CD-SQDs were prepared by a facile assembly fission method and could selectively recognize L-Trp by the different binding ability between L/D-Trp and β-CD. The inclusion of L-Trp and the stereoselective catalysis of CD-SQDs enzyme mimics cause the increased fluorescence intensity of CD-SQDs, which has a linear response ranging from 10 to 500 nM and the detection limit as 2.3 nM. CD-SQDs also show great selectivity for L-Trp from the commercial compound amino acid injection. The study could provide an effective method for the chiral recognition of amino acid enantiomers based on the catalytic activity of nanoenzymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐药菌引起的伤口感染对人类健康构成极大威胁,开发非耐药抗菌方法已成为研究重点。在这项研究中,我们开发了Cu2O-SnO2掺杂的聚多巴胺(CSPDA)三重立方抗菌纳米酶,具有高的光热转化效率和良好的Fenton样过氧化氢酶性能。CSPDA抗菌纳米平台可以在808nm近红外(NIR)照射下,以低浓度(50μg·mL-1)催化H2O2产生羟基自由基(·OH),以实现光热疗法(PTT)和化学动力学疗法(CDT)。CSPDA抗菌纳米平台在体外对革兰氏阴性大肠杆菌(100%)和革兰氏阳性金黄色葡萄球菌(100%)均具有广谱和持久的抗菌作用。此外,在混合细菌感染的小鼠伤口模型中,纳米平台表现出显著的体内杀菌效果,同时保持良好的细胞相容性。最后,这项研究成功地开发了一种高效和持久的细菌感染治疗系统。该系统为协同抗微生物治疗设计的未来研究提供了不同的选择。因此,合成的协同光热疗法和化学动力学疗法纳米酶具有快速和长期的杀菌能力,良好的粘结性能,有效预防伤口感染,临床应用。重要声明:耐药菌引起的伤口感染对人类健康构成极大威胁,开发非耐药抗菌方法已成为研究重点。在这项研究中,我们开发了Cu2O-SnO2掺杂的聚多巴胺(CSPDA)具有高光热转化效率和Fenton样过氧化氢酶效应的三重立方卵黄状抗菌纳米酶,用于光热和化学动力学抗菌治疗,同时,纳米复合材料在天然水环境中长时间浸泡表现出良好的抗菌粘附性。总之,这项研究成功地开发了一种高效和持久的细菌感染治疗系统。这些发现为协同抗菌和抗菌粘合剂系统设计的未来研究提供了开创性策略。
    Wound infections caused by drug-resistant bacteria pose a great threat to human health, and the development of non-drug-resistant antibacterial approaches has become a research priority. In this study, we developed Cu2O-SnO2 doped polydopamine (CSPDA) triple cubic antibacterial nanoenzymes with high photothermal conversion efficiency and good Fenton-like catalase performance. CSPDA antibacterial nanoplatform can catalyze the generation of hydroxyl radical (·OH) from H2O2 at low concentration (50 μg∙mL-1) under 808 nm near-infrared (NIR) irradiation to achieve a combined photothermal therapy (PTT) and chemodynamic therapy (CDT). And the CSPDA antibacterial nanoplatform displays broad-spectrum and long-lasting antibacterial effects against both Gram-negative Escherichia coli (100 %) and Gram-positive Staphylococcus aureus (100 %) in vitro. Moreover, in a mouse wound model with mixed bacterial infection, the nanoplatform demonstrates a significant in vivo bactericidal effect while remaining good cytocompatible. To conclude, this study successfully develops an efficient and long-lasting bacterial infection treatment system. This system provided different options for future studies on the design of synergistic antimicrobial therapy. Hence, the as-synthesized synergetic photothermal therapy and chemodynamic therapy nanoenzymes have rapid and long-term bactericidal ability, well-conglutinant performance and effectively preventing wound infection for clinical application. STATEMENT OF SIGNIFICANCE: Wound infections caused by drug-resistant bacteria pose a great threat to human health, and the development of non-drug-resistant antibacterial approaches has become a research priority. In this study, we developed Cu2O-SnO2 doped polydopamine (CSPDA) triple cubic yolk-like antibacterial nanoenzymes with high photothermal conversion efficiency and Fenton-like catalase effect for photothermal and Chemodynamic antibacterial therapy, Meanwhile, the nanocomposites exhibit good antibioadhesion in a natural water environment for a long-time immersion. In conclusion, this study successfully develops an efficient and long-lasting bacterial infection treatment system. These findings present a pioneering strategy for future research on the design of synergistic antibacterial and antibioadhesive systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号