membrane fission

膜裂变
  • 文章类型: Journal Article
    中尺度物理学弥合了系统微观自由度与其大规模连续行为之间的差距,并突出了一些关键量在复杂和多尺度现象中的作用,就像动力蛋白驱动的脂质膜裂变。动态蛋白包裹在网格蛋白介导的内吞作用期间形成的颈部,例如,并限制它直到切断发生。虽然无处不在,对生活至关重要,蛋白质内消耗GTP的构象变化与潜在脂质底物的全面反应之间的合作尚未被解开。在这项工作中,我们建立了一个有效的介观模型,从收缩到分裂的脂质小管基于连续膜弹性和隐含地考虑棘轮样的动力冲程。裂变事件的定位,整体几何形状,我们预测的能量消耗符合主要实验结果。这支持了这样的想法,即连续的图片很快就会出现,以将动态蛋白聚合长度,膜刚度和张力与裂变的最佳途径联系起来。因此,我们建议在体内过程中发现的动力蛋白可以相应地优化其结构。最终,我们揭示了文献中可用的实时电导测量,并预测了裂变时间对弹性参数的依赖性。
    Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and its large-scale continuous behavior and highlights the role of a few key quantities in complex and multiscale phenomena, like dynamin-driven fission of lipid membranes. The dynamin protein wraps the neck formed during clathrin-mediated endocytosis, for instance, and constricts it until severing occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP-consuming conformational changes within the protein and the full-scale response of the underlying lipid substrate is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet-like power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy expenditure we predict comply with the major experimental findings. This bolsters the idea that a continuous picture emerges soon enough to relate dynamin polymerization length and membrane rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real-time conductance measurements available in literature and predict the fission time dependency on elastic parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜管结合裂变(MTCF)是一种普遍现象,但它们的协调机制尚不清楚。部分原因是缺乏监测膜管动态和随后裂变的分析方法。使用聚合物缓冲双层岛,我们分析了与裂变催化剂dynamin2(Dyn2)混合的膜微管器桥接积分器1(BIN1)。我们的结果表明,这种混合物构成了一个最小的双组分模块,证明了MTCF。MTCF是一种新兴特性,由于BIN1促进募集,但以剂量依赖性方式抑制Dyn2的膜结合而产生。因此MTCF仅在高Dyn2与BIN1比率下是明显的。由于它们共同参与T-小管的生物发生,BIN1和Dyn2的突变与核中心性肌病相关,我们的分析将病理学与异常MTCF联系起来.一起,我们的结果建立了缓冲双层岛作为分析膜管的简单模板,并告知协调MTCF的机制。
    Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dynamin在出芽内吞囊泡的颈部组装成螺旋聚合物,随着其在GTP酶循环中的进展,收缩下层膜,以从质膜上切断囊泡。尽管与三磷酸鸟苷(GTP)类似物结合的动态蛋白螺旋聚合物的原子模型定义了膜收缩的早期阶段,没有组装态GTP水解后的原子模型。这里,我们使用冷冻EM方法来确定组装在脂质小管上的动态蛋白螺旋聚合物的原子结构,类似于出芽内吞囊泡的颈部,在鸟苷二磷酸(GDP)结合中,超收缩状态。在这种状态下,Dynamin被组装为具有3.4nm内腔的2-start螺旋,准备自发裂变。此外,通过低温电子层析成像,我们使用GTPase缺陷的动态蛋白K44A突变体在HeLa细胞内捕获动态蛋白螺旋组装,并观察到不同的动态蛋白螺旋,证明dynamin可以容纳可能先于膜裂变的细胞中的一系列组装复合物。
    Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类载脂蛋白L(APOL)的功能知之甚少,但涉及多种活动,如血液锥虫和细胞内细菌的裂解,调节病毒感染和诱导细胞凋亡,自噬,和慢性肾病。根据最近的工作,我认为APOL的基本功能是控制膜动力学,至少在高尔基体和线粒体.连同神经元钙传感器-1(NCS1)和钙神经元-1(CALN1),APOL3控制磷脂酰肌醇-4-激酶-IIIB(PI4KB)的活性,参与高尔基体和线粒体膜裂变。分泌的APOL1通过寄生虫线粒体的膜透化诱导非洲锥虫裂解,在干扰PI4KB-APOL3相互作用的条件下,细胞内APOL1调节非肌肉肌球蛋白2A(NM2A)介导的PI4KB和APOL3从高尔基体转移到线粒体,例如APOL1C端变体表达或病毒诱导的炎症信号传导。APOL3通过与膜裂变因子PI4KB和膜融合因子囊泡相关膜蛋白8(VAMP8)的互补相互作用来控制有丝分裂。在老鼠身上,基本的APOL1和APOL3活性可以分别由mAPOL9和mAPOL8发挥。关于APOL1相关肾脏疾病的机制和治疗的观点进行了讨论,以及对其他APOL功能的猜测,例如APOL6通过与肌球蛋白10(MYH10)相互作用参与脂肪细胞膜动力学。
    The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    HIV-1出芽以及许多其他细胞过程需要运输所需的内体分选复合物(ESCRT)机制。由于空间分辨率和瞬时ESCRT-III募集,对HIV-1出芽位点的天然ESCRT-III复合物的理解受到限制。这里,我们开发了一种药物诱导的瞬时HIV-1出芽抑制工具,以提高ESCRT-III在出芽位点的寿命.我们生成了可自动切割的CHMP2A,CHMP3和CHMP4B与丙型肝炎病毒NS3蛋白酶的融合蛋白。我们在不存在和存在蛋白酶抑制剂Glecaprevir的情况下表征了CHMP-NS3融合蛋白的表达,稳定性,本地化,和HIV-1GagVLP萌芽。免疫印迹实验揭示了CHMP-NS3融合蛋白的快速稳定积累。值得注意的是,在药物管理后,CHMP2A-NS3和CHMP4B-NS3融合蛋白显著降低VLP释放,而CHMP3-NS3没有作用,但与CHMP2A-NS3协同作用。定位研究表明CHMP-NS3融合蛋白在质膜上的重新定位,内体,和GagVLP萌芽位点。通过结合使用透射电子显微镜和视频显微镜,我们揭示了CHMP2A-NS3和CHMP4B-NS3的药物依赖性积累,导致HIV-1Gag-VLP释放延迟.我们的发现为在HIV-1出芽过程中抑制ESCRT-III的功能后果提供了新的见解,并建立了新的工具来破译ESCRT-III在HIV-1出芽位点和其他ESCRT催化的细胞过程中的作用。
    HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工或合成细胞器是自下而上合成生物学的关键挑战。到目前为止,合成细胞器通常基于球形膜隔室,用于在空间上限制选定的化学反应。在体内,这些隔室通常远非球形,并且可以表现出相当复杂的结构。一个特别令人着迷的例子是内质网(ER),它通过形成由三通连接的膜纳米管的连续网络而延伸到整个细胞。纳米管具有在50和100nm之间的典型直径。尽管实验取得了很大进展,ER形态的几个基本方面仍然难以捉摸。一个长期存在的难题是在光学显微镜下直管的外观,形成接触角接近120°的不规则多边形。另一个令人费解的方面是细管和接头的纳米级形状,通过电子显微镜和结构化照明显微镜获得了非常不同的图像。此外,网状网络的形成和维持都需要GTP和GTP水解膜蛋白。事实上,当GTP的供应中断时,纳米管的碎片会破坏网络。这里,有人认为,所有这些令人费解的观察结果彼此密切相关,并且与锚定在同一膜上的两个膜蛋白的二聚化密切相关。到目前为止,这种二聚化过程的功能意义仍然难以捉摸,因此,似乎浪费了很多GTP。然而,这个过程可以产生有效的膜张力,稳定网状网络的不规则多边形几何形状,并防止它们的小管破碎,从而保持ER的完整性。通过将GTP水解膜蛋白整合到巨大的单层囊泡中,有效的膜张力将成为系统的实验研究。
    Artificial or synthetic organelles are a key challenge for bottom-up synthetic biology. So far, synthetic organelles have typically been based on spherical membrane compartments, used to spatially confine selected chemical reactions. In vivo, these compartments are often far from being spherical and can exhibit rather complex architectures. A particularly fascinating example is provided by the endoplasmic reticulum (ER), which extends throughout the whole cell by forming a continuous network of membrane nanotubes connected by three-way junctions. The nanotubes have a typical diameter of between 50 and 100 nm. In spite of much experimental progress, several fundamental aspects of the ER morphology remain elusive. A long-standing puzzle is the straight appearance of the tubules in the light microscope, which form irregular polygons with contact angles close to 120°. Another puzzling aspect is the nanoscopic shapes of the tubules and junctions, for which very different images have been obtained by electron microcopy and structured illumination microscopy. Furthermore, both the formation and maintenance of the reticular networks require GTP and GTP-hydrolyzing membrane proteins. In fact, the networks are destroyed by the fragmentation of nanotubes when the supply of GTP is interrupted. Here, it is argued that all of these puzzling observations are intimately related to each other and to the dimerization of two membrane proteins anchored to the same membrane. So far, the functional significance of this dimerization process remained elusive and, thus, seemed to waste a lot of GTP. However, this process can generate an effective membrane tension that stabilizes the irregular polygonal geometry of the reticular networks and prevents the fragmentation of their tubules, thereby maintaining the integrity of the ER. By incorporating the GTP-hydrolyzing membrane proteins into giant unilamellar vesicles, the effective membrane tension will become accessible to systematic experimental studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Atg18、Atg21和Hsv2是与PI3P和PI(3,5)P2结合的同源β-推进器蛋白。Atg18被认为在生长中的自噬体(吞噬团)与ER和液泡的接触部位组织脂质转移蛋白复合物。Atg21仅限于液泡吞噬体接触,它组织了Atg8脂化机械的一部分。对Hsv2的作用了解较少,它部分影响微核吞噬。Atg18进一步参与PI(3,5)P2合成的调节。最近,揭示了一种新型的Atg18-retromer复合物及其在液泡稳态和膜裂变中的作用。
    Atg18, Atg21 and Hsv2 are homologous β-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体是动态的细胞器,在由内质网(ER)-线粒体膜接触位点(MCSs)定义的统一平台上进行裂变和融合循环。这些MCS或节点共同定位裂变和聚变机制。我们着手确定ER相关的线粒体节点如何调节裂变和融合机器组装。我们使用了一种与融合机制相连的混杂生物素连接酶,Mfn1和蛋白质组学鉴定ER膜蛋白,ABHD16A,作为节点形成的主要调节器。在没有ABHD16A的情况下,裂变和融合机制无法招募到ER相关的线粒体节点,裂变和聚变率显著降低。ABHD16A包含一个酰基转移酶基序和一个α/β水解酶结构域,这些区域的关键残基中的点突变无法挽救ER相关线粒体热点的形成。这些数据表明ABHD16A通过改变ER-线粒体MCSs处的磷脂组成而起作用的机制。我们的数据提供了ER膜蛋白的第一个例子,该蛋白调节裂变和融合机制向线粒体的募集。
    Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes, and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/β hydrolase domain, and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜封闭的运输载体在动态过程中对细胞中的站之间的生物分子进行分类,这对于真核生物的生理学至关重要。虽然很多关于载体从特定细胞内膜的形成和释放的知识,从循环内体形成载体的机制,细胞信号的中心隔间,还有待解决。在秀丽隐杆线虫中,从回收内体形成运输载体需要类似于发电机,Eps15同源域(EHD)蛋白,RME-1,与Bin/两栖蛋白/Rvs(N-BAR)结构域蛋白起作用,AMPH-1.在这里我们展示,使用称为爆发分析光谱(BAS)的自由溶液单粒子技术,AMPH-1单独创造小的,大的管状泡状产品,由膜裂变产生的单层囊泡。膜裂变需要AMPH-1的两亲性H0螺旋,并且在RME-1存在下减慢。出乎意料的是,在GTP存在下,AMPH-1诱导的膜裂变被刺激。此外,AMPH-1的GTP刺激的膜裂变活性由酵母的异源二聚体N-BAR两栖类蛋白概括,Rvs161/167p,强烈表明GTP刺激的膜裂变是这类重要的N-BAR蛋白的一般性质。
    Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    细胞间通讯是所有多细胞生物中必不可少的过程。在这个过程中,一个细胞分泌的分子将与同源细胞上的受体结合,导致随后吸收受体-配体复合物。一旦进去,然后细胞决定受体-配体复合物和任何其他一起被内吞的蛋白质的命运。大约80%的内吞材料直接或间接地通过高尔基体再循环回到质膜,剩余的20%被递送到溶酶体用于降解。虽然已经确定了大多数途径,我们仍然缺乏对如何实现将货物回收到不同途径中的特异性的理解,以及细胞如何在大量客户端蛋白质中没有清晰的分选信号的情况下达到这些过程的高精度。在这次审查中,我们将总结我们目前对回收货物分类背后的机制的理解,并提出一个关于内体迭代分类的货物和货物受体/衔接子之间的差异亲和力模型。
    Intercellular communication is an essential process in all multicellular organisms. During this process, molecules secreted by one cell will bind to a receptor on the cognate cell leading to the subsequent uptake of the receptor-ligand complex. Once inside, the cell then determines the fate of the receptor-ligand complex and any other proteins that were endocytosed together. Approximately 80% of endocytosed material is recycled back to the plasma membrane either directly or indirectly via the Golgi apparatus and the remaining 20% is delivered to the lysosome for degradation. Although most pathways have been identified, we still lack understanding on how specificity in sorting of recycling cargos into different pathways is achieved, and how the cell reaches high accuracy of these processes in the absence of clear sorting signals in the bulk of the client proteins. In this review, we will summarize our current understanding of the mechanism behind recycling cargo sorting and propose a model of differential affinities between cargo and cargo receptors/adaptors with regards to iterative sorting in endosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号