isodisomy

  • 文章类型: Journal Article
    目的:使用联合全基因组测序(WGS)研究两种不相关的遗传性疾病,即肌营养不良和Prader-Willi综合征(PWS)(OMIM#176270)。
    方法:进行TrioWGS联合分析,以调查PWS先证者的遗传病因,长期肌张力减退相关的高CK血症,和早发性肥胖。父母没有受到影响。
    结果:结果显示,第15号染色体上的母体同分体(UPD)从15q11.2扩展到15q22.2,包括15q11.2-15q13的PWS区域。从15q22.2到15q26.3检测到母体异体。一种致病变体,NM_000070.3(CAPN3):c.550del(p。Thr184fs),在15q15.1鉴定出母亲的杂合状态,由于母亲的等位体在先证者中是纯合的。
    结论:这是对同一患者中PWS和钙疼痛病(OMIM#253600)并发分子病因的首次研究。该报告强调了联合分析的实用性以及对具有复杂和无法解释的表型的患者等体分区域的常染色体隐性疾病评估的必要性。
    OBJECTIVE: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS).
    METHODS: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected.
    RESULTS: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy.
    CONCLUSIONS: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    基因技术的进步使基因检测比以往任何时候都更容易获得。然而,取决于国家,区域,legal,和健康保险情况,在现实世界的临床实践中,测试程序可能仍然需要简化。在具有血缘关系的常染色体隐性疾病的情况下,突变位点必然是等分体,因为两个等位基因都来自一个共同的祖先染色体。基于这个前提,在国家健康保险制度的限制下,我们在1例患有着色性干皮病(XP)的日本患者中使用SNP阵列筛查和基于远程PCR的靶向NGS实施了综合遗传诊断方法.SNP阵列结果仅在XPC和ERCC4基因座中显示等分体。NGS,用最小的一套长程PCR引物,在XPC中检测到纯合移码突变;NM_004628.5:c.218_219insTp.(Lys73AsnfsTer9),经Sanger测序证实,导致XP组C的快速诊断。这种捷径策略适用于所有由近亲婚姻引起的常染色体隐性遗传疾病,尤其是在需要测试中等数量基因的情况下,在临床遗传学实践中很常见。
    Advances in genetic technologies have made genetic testing more accessible than ever before. However, depending on national, regional, legal, and health insurance circumstances, testing procedures may still need to be streamlined in real-world clinical practice. In cases of autosomal recessive disease with consanguinity, the mutation locus is necessarily isodisomy because both alleles originate from a common ancestral chromosome. Based on this premise, we implemented integrated genetic diagnostic methods using SNP array screening and long range PCR-based targeted NGS in a Japanese patient with xeroderma pigmentosum (XP) under the limitation of the national health insurance system. SNP array results showed isodisomy only in XPC and ERCC4 loci. NGS, with a minimal set of long-range PCR primers, detected a homozygous frameshift mutation in XPC; NM_004628.5:c.218_219insT p.(Lys73AsnfsTer9), confirmed by Sanger sequencing, leading to a rapid diagnosis of XP group C. This shortcut strategy is applicable to all autosomal recessive diseases caused by consanguineous marriages, especially in scenarios with a moderate number of genes to test, a common occurrence in clinical genetic practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    染色体1(UPD1)的完全单亲二体性是一种罕见的遗传发现,尚未确定特定的表型。我们介绍了一个具有完全父系UPD1和孤立发育延迟的男孩,并建议UPD1没有明确的表型。
    Complete uniparental disomy of chromosome 1 (UPD1) is an uncommon genetic finding about which a specific phenotype has not yet been established. We present a boy who has complete paternal UPD1 and isolated developmental delay and suggest that there is no clear phenotype of UPD1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:众所周知,单亲二体(UPD)与印记障碍密切相关。此外,UPD可通过“激活”隐性基因突变或由于不完全(隐秘)三体挽救而导致疾病。对应于UPD如何形成的所有常见理论,它是由于“染色体问题”而发生的,比如非整倍性或染色体重排。尽管如此,UPD很少被认为是细胞遗传学,但最常见的是分子遗传问题。
    结果:这里提供了对已发表的4900例UPD病例的综述,尽管像论文中讨论的那样存在偏见,从该分析中得出以下见解:(1)母体UPD与父亲UPD的比率为2〜3:1;(2)科学地掌握了最多约0.03%的UPD病例,然而;(3)单个全染色体更新的频率是非随机的,UPD(16)和UPD(15)在临床健康和患病人群中最常见,分别;(4)UPD频率与已知频繁的孕早期三体有直接相关性,除了1号、5号、11号和18号染色体(可以解释);(5)在最近的报道中,异体分不足,UPD-镶嵌性过度;(6)当确定UPD时,细胞遗传学被认为不够。
    结论:由于UPD是使用分子遗传学方法诊断的,因此,专家认为染色体充其量只是大自然的一时兴起,大多数UPD报告缺乏染色体方面。在这里,相应的数据确认并证实了UPD首先是一种染色体疾病,并且在每个诊断的UPD病例中都表明了细胞遗传学分析。
    BACKGROUND: Uniparental disomy (UPD) is well-known to be closely intermingled with imprinting disorders. Besides, UPD can lead to a disease by \'activation\' of a recessive gene mutation or due to incomplete (cryptic) trisomic rescue. Corresponding to all common theories how UPD forms, it takes place as a consequence of a \"chromosomic problem\", like an aneuploidy or a chromosomal rearrangement. Nonetheless, UPD is rarely considered as a cytogenetic, but most often as a molecular genetic problem.
    RESULTS: Here a review on the ~ 4900 published UPD-cases is provided, and even though being biased as discussed in the paper, the following insights have been given from that analysis: (1) the rate of maternal to paternal UPD is 2~3 to 1; (2) at most only ~ 0.03% of the available UPD cases are grasped scientifically, yet; (3) frequencies of single whole-chromosome UPDs are non-random, with UPD(16) and UPD(15) being most frequent in clinically healthy and diseased people, respectively; (4) there is a direct correlation of UPD frequency and known frequent first trimester trisomies, except for chromosomes 1, 5, 11 and 18 (which can be explained); (5) heterodisomy is under- and UPD-mosaicism is over-represented in recent reports; and (6) cytogenetics is not considered enough when a UPD is identified.
    CONCLUSIONS: As UPD is diagnosed using molecular genetic approaches, and thus by specialists considering chromosomes at best as a whim of nature, most UPD reports lack the chromosomal aspect. Here it is affirmed and substantiated by corresponding data that UPD is a chromosomic disorder in the first place and cytogenetic analyses is indicated in each diagnosed UPD-case.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Considering the overall frequency of paternity investigation cases including mutational events, there is a real possibility that at least a fraction of all inconsistencies reported in paternity cases are caused not by polymerase slippage mutations, but to chromosomic abnormalities, as Uniparental Disomy (UPD). We report here the investigation of a trio paternity case (mother, child and alleged father), with observed inconsistencies that can alternatively be explained by occurrence of maternal uniparental isodisomy of chromosome 21 (miUPD21). A total of 350 short tandem repeat (STR) and single nucleotide polymorphism (SNP) markers were tested, statistically suggesting true biological linkage within the trio. Additionally, we propose miUPD21 explains, with significantly greater probability, the occurrence of detected inconsistencies, when compared to alternative hypothesis of multiple and simultaneous slippage mutations. Similar cases could have their statistical conclusions improved or even altered by including unusual chromosomal segregation patterns in the hypothesis formulation, as well as in mathematical calculations. Such reports of allelic inconsistencies being explained by chromosomal alterations are common in clinical genetics, and such situations might have impact on forensic investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    BACKGROUND: Uniparental disomy (UPD) is a rare condition in which a child inherits both copies of a chromosome or chromosome segment from one parent. Medical consequences of UPD may include abnormal imprinting, unmasking of genetic disease, and somatic mosaicism; alternatively, the condition may be clinically silent. We present a case of maternal UPD for chromosome 6, a rare condition previously reported less than 20 times. In our patient with a normal phenotype, the condition was discovered through abnormal paternity testing results. Uniparental isodisomy is a rare cause of discordant parentage testing results, but it is an important phenomenon to recognize.
    METHODS: We present a female born at 32 weeks gestational age with birth weight 10-25%ile when corrected for prematurity. Paternity testing was obtained for legal reasons, and initial results appeared to exclude the alleged father. However, the lab performed additional testing which indicated that the patient was homozygous for maternal alleles for all three tested loci located on chromosome 6. Based on these results, the patient was referred for a medical genetics evaluation for possible maternal uniparental disomy. She presented for her consultation at 10 months of age and appeared to be developing appropriately. Her age-adjusted weight, length, and head circumference were <3%ile, 10%ile, and 25%ile respectively. Chromosomal microarray testing confirmed maternal UPD6. The patient was seen again at 14 months of age, and her weight and length were 10-25%ile. She had not developed concerning symptoms or physical exam findings.
    CONCLUSIONS: The presence of UPD, especially in asymptomatic patients, has implications for paternity testing, as standard methods may miss cases of both isodisomy and heterodisomy. This rare inheritance pattern should be considered when discordant paternity results come under suspicion. It is unusual for a parentage testing lab to perform the amount of testing done for this case, but the initial inconsistencies necessitated further investigation. UPD6 has uncertain effects and variable phenotypes, so this patient\'s genetic abnormality likely would have gone undiscovered if not for the non-medical indication for the laboratory analysis. Her asymptomatic presentation raises the possibility that UPD may be more common than previously estimated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Single-nucleotide polymorphism (SNP) microarrays can easily identify whole-chromosome isodisomy but are unable to detect whole-chromosome heterodisomy. However, most cases of uniparental disomy (UPD) involve combinations of heterodisomy and isodisomy, visualized on SNP microarrays as long continuous stretches of homozygosity (LCSH). LCSH raise suspicion for, but are not diagnostic of, UPD, and reporting necessitates confirmatory testing. The goal of this study was to define optimal LCSH reporting standards.
    Eighty-nine individuals with known UPD were analyzed using chromosomal microarray. The LCSH patterns were compared with those in a phenotypically normal population to predict the clinical impact of various reporting thresholds. False-positive and -negative rates were calculated at various LCSH thresholds.
    Twenty-seven of 84 cases with UPD had no significant LCSH on the involved chromosome. Fifty UPD-positive samples had LCSH of varying sizes: the average size of terminal LCSH was 11.0 megabases while the average size of interstitial LCSH was 24.1 megabases. LCSH in the normal population tended to be much smaller (average 4.3 megabases) and almost exclusively interstitial; however, overlap between the populations was noted.
    We hope that this work will aid clinical laboratories in the recognition and reporting of LCSH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders caused by loss of function of the imprinted genes at 15q11q13. A 5-7 Mb paternal/maternal deletion of chromosomal region 15q11.2q13 is the major genetic cause of PWS/AS, but in a small group of patients, the PWS/AS phenotype can result from maternal/paternal uniparental disomy (UPD) of chromosome 15. Various mechanisms leading to UPD include gametic complementation, trisomy rescue, and compensatory UPD, which can be inferred from the pattern of uniparental heterodisomy (heteroUPD) or uniparental isodisomy (isoUPD). However, heteroUPD and isoUPD, especially mixed heteroUPD and isoUPD, are very rare in patients with PWS/AS. Here, we report 2 children with PWS/AS caused by mixed segmental heteroUPD 15 and isoUPD 15 which failed to be identified by chromosome microarray (CMA) but could be detected by other molecular genetic methods. The present report unravels the mechanism of mixed iso/heteroUPD 15 in PWS/AS and phenotype-genotype correlations. Moreover, our study suggests that CMA is prone to misdiagnosis for imprinting disorders such as PWS/AS, though it is considered a highly useful tool for copy number variations. As a result, other molecular detection methods, such as methylation analysis and STR marker analysis for UPD, should be supplementary used in this situation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Maternal uniparental disomy of chromosome 14 (upd(14)mat) or Temple syndrome is an imprinting disorder associated with a relatively mild phenotype. The absence of specific congenital malformations makes this condition underdiagnosed in clinical practice. A boy with a de novo robertsonian translocation 45,XY,rob(13;14)(q10;q10) is reported; a CGH/SNP array showed a loss of heterozygosity in 14q11.2q13.1. The final diagnosis of upd(14)mat was made by microsatellite analysis, which showed a combination of heterodisomy and isodisomy for different regions of chromosome 14. Obesity after initial failure to thrive developed, while compulsive eating habits were not present, which was helpful for the clinical differential diagnosis of Prader-Willi syndrome. In addition, the boy presented with many phenotypic features associated with upd(14)mat along with hypoesthesia to pain, previously unreported in this disorder, and bilateral cryptorchidism, also rarely described. These features, as well as other clinical manifestations (i.e., truncal obesity, altered pubertal timing), may suggest a hypothalamic-pituitary involvement. A detailed cytogenetic and molecular characterization of the genomic rearrangement is presented. Early genetic diagnosis permits a specific follow-up of children with upd(14)mat in order to optimize the long-term outcome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Whole exome sequencing (WES) has made the identification of causative SNVs/InDels associated with rare Mendelian conditions increasingly accessible. Incorporation of softwares allowing CNVs detection into the WES bioinformatics pipelines may increase the diagnostic yield. However, no standard protocols for this analysis are so far available and CNVs in non-coding regions are totally missed by WES, in spite of their possible role in the regulation of the flanking genes expression. So, in a number of cases the diagnostic workflow contemplates an initial investigation by genomic arrays followed, in the negative cases, by WES. The opposite workflow may also be applied, according to the familial segregation of the disease. We show preliminary results for a diagnostic application of a single next generation sequencing panel permitting the concurrent detection of LOH and variations in sequences and copy number. This approach allowed us to highlight compound heterozygosity for a CNV and a sequence variant in a number of cases, the duplication of a non-coding region responsible for sex reversal, and a whole-chromosome isodisomy causing reduction to homozygosity for a WFS1 variant. Moreover, the panel enabled us to detect deletions, duplications, and amplifications with sensitivity comparable to that of the most widely used array-CGH platforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号