dorsal horn

背角
  • 文章类型: Journal Article
    目的:探讨髓样分化因子2(MD2)在炎症诱导疼痛及针刺镇痛中的变化。
    方法:采用随机数字表法将小鼠随机分为3组:生理盐水组(n=16),完全弗氏佐剂(CFA)组(n=24)和CFA电针(EA)组(n=26)。通过向小鼠后爪的足底表面注射CFA来模拟炎症诱导的疼痛,并将EA应用于双侧足三里(ST36)以减轻疼痛。仅CFA+EA组中的小鼠在建模后24小时接受EA治疗(30分钟/d,持续2周)。盐水和CFA组中的小鼠接受假EA。von-Frey试验和Hargreaves试验用于评估疼痛阈值。收集脑和脊髓组织进行免疫荧光染色或Western印迹以定量MD2表达的变化。
    结果:CFA成功诱导了足底疼痛,EA在造模后3天明显减轻了疼痛(P<0.01)。与CFA组相比,EA后7天和14天,脊髓背角的MD2/c-fos神经元数量显着增加,尤其是层I-层Io(P<0.01)。双阳性细胞占c-fos阳性细胞数的比例和MD2神经元的平均荧光强度在I-IIo层中也显着增加(P<0.01)。Westernblotting结果显示,在第7天和第14天,仅在海马中通过EA显着降低了MD2的水平(均P<0.01),在皮质中没有观察到明显的变化。丘脑,小脑,或脑干(P<0.05)。荧光染色显示,在第7天注射CFA后,肾小球周围灰色(PAG)和蓝斑(LC)中MD2的水平显着降低(PAG<0.01,LC的P<0.05)和EA显着逆转了这种下降(PAG的P<0.01,LC的P<0.05)。
    结论:MD2的独特变化表明,EA可能通过调节脊髓浅层和大脑某些区域的神经元活动来发挥镇痛作用。
    OBJECTIVE: To investigate changes of myeloid differentiation factor 2 (MD2) in inflammation-induced pain and acupuncture-mediated analgesia.
    METHODS: Mice were randomly divided into three groups by a random number table method: saline group (n=16), complete Freund\'s adjuvant (CFA) group (n=24) and CFA+electroacupuncture (EA) group (n=26). Inflammation-induced pain was modelled by injecting CFA to the plantar surface of the hind paw of mice and EA was applied to bilateral Zusanli (ST 36) to alleviate pain. Only mice in the CFA+EA group received EA treatment (30 min/d for 2 weeks) 24 h after modelling. Mice in the saline and CFA groups received sham EA. von-Frey test and Hargreaves test were used to assess the pain threshold. Brain and spinal tissues were collected for immunofluorescence staining or Western blotting to quantify changes of MD2 expression.
    RESULTS: CFA successfully induced plantar pain and EA significantly alleviated pain 3 days after modelling (P<0.01). Compared with the CFA group, the number of MD2+/c-fos+ neurons was significantly increased in the dorsal horn of the spinal cord 7 and 14 days after EA, especially in laminae I - IIo (P<0.01). The proportion of double positive cells to the number of c-fos positive cells and the mean fluorescence intensity of MD2 neurons were also significantly increased in laminae I - IIo (P<0.01). Western blotting showed that the level of MD2 was significantly decreased by EA only in the hippocampus on day 7 and 14 (both P<0.01) and no significant changes were observed in the cortex, thalamus, cerebellum, or the brainstem (P<0.05). Fluorescence staining showed significant decrease in the level of MD2 in periagueductal gray (PAG) and locus coeruleus (LC) after CFA injection on day 7 (P<0.01 for PAG, P<0.05 for LC) and EA significantly reversed this decrease (P<0.01 for PAG, P<0.05 for LC).
    CONCLUSIONS: The unique changes of MD2 suggest that EA may exert the analgesic effect through modulating neuronal activities of the superficial laminae of the spinal cord and certain regions of the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近的工作表明,脊髓D1和D5多巴胺受体(D1/D5Rs)的激活可促进非Hebbian长期增强(LTP)在脊髓投射神经元的初级传入突触上。然而,在脊髓伤害性回路中驱动非HebbianLTP的D1/D5R的细胞定位仍然未知,也不清楚D1/D5R信号是否必须与感觉输入同时发生,以促进这些突触的非HebbianLTP。在这里,我们使用来自I层脊髓臂神经元的D1R或D5Rs的细胞类型选择性敲除来研究这些问题,使用基于Cre重组酶的遗传策略,任何性别的成年小鼠的背根神经节(DRG)神经元或星形胶质细胞。在选择性D1/D5R激动剂SKF82958的存在下,初级传入神经的低频刺激引起的LTP在脊髓臂神经元中D1R或D5R敲低后持续存在,这表明突触后D1/D5R信号对于感觉突触的非Hebbian可塑性是不必要的,这些关键输出神经元的浅层背角(SDH)。同样,DRG神经元中D1Rs或D5Rs的敲除未能影响I层投射神经元中SKF82958启用的LTP.相比之下,SKF82958诱导的LTP被脊髓星形胶质细胞中D1R或D5R的敲低所抑制。此外,数据表明,脊髓星形胶质细胞中D1R/D5Rs的激活可以逆转录或主动驱动脊髓臂神经元中的非HebbianLTP。总的来说,这些结果表明,星形胶质细胞中的多巴胺能信号可以强烈促进SDH中的活性依赖性LTP,这被预测会显著增强从脊髓到大脑的上升伤害性传递的放大。意义陈述感觉突触对层I投射神经元的长期增强(LTP)代表了一种关键机制,通过这种机制,脊髓浅层背角(SDH)可以增强对大脑的上升伤害性传递。在这里,我们证明了在脊髓星形胶质细胞中表达的D1或D5多巴胺受体的激活在小鼠脊髓背臂神经元的初级传入输入时促进了非HebbianLTP。此外,星形胶质细胞D1/D5R信号不仅能逆转最近活跃的感觉突触,而且在随后的刺激后,还主动启动突触以进行LTP。这些结果确定了星形胶质细胞上的多巴胺能信号作为SDH中突触化可塑性的关键调节剂,并表明星形胶质细胞D1/D5Rs可以作为增益控制,使脊髓伤害性传递过度放大。
    Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓背角抑制对感觉输入的处理至关重要,其损害导致机械性异常性疼痛。这种减少的抑制作用是如何发生的,以及它的恢复是否减轻了异常疼痛,人们知之甚少。这里,我们表明,抑制性音调丧失的关键步骤是抑制性小白蛋白(PV)表达神经元(PVN)的放电模式的变化。我们的结果表明,PV,一种钙结合蛋白,通过使PVN能够维持高频补音放电模式来控制PVN的放电活动。神经损伤后,PVN过渡到适应性放电并降低其PV表达。有趣的是,降低PV对于机械性异常疼痛的发展和PVN向适应性放电的过渡是必要和充分的。放电模式的这种转变是由于钙激活钾(SK)通道的募集,并在慢性疼痛期间阻断它们恢复正常的滋补放电并缓解慢性疼痛。我们的发现表明,PV对于控制PVN的放电模式和预防异常性疼痛至关重要。开发操纵这些机制的方法可能会导致缓解慢性疼痛的不同策略。
    Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    感觉反馈对于上下文适当的电机输出是不可或缺的,然而负责的神经回路仍然难以捉摸。这里,我们将小鼠脊髓的内侧深背角定位为本体感觉和皮肤输入的会聚点。在这个区域内,我们确定了一组表达小清蛋白的有张力活性的甘氨酸能抑制性神经元。利用解剖学和电生理学,我们证明了深背角小白蛋白表达中间神经元(dPV)的活动是由会聚的本体感觉形成的,皮肤,和降序输入。选择性靶向脊髓dPV,我们揭示了它们对运动前和运动网络的广泛同侧抑制,并证明了它们在使用肌电图(EMG)记录门控感觉诱发肌肉活动中的作用。dPV消融改变了跑步机运动过程中的肢体运动学和步进周期定时,并减少了自发行为过程中次运动之间的过渡。这些发现揭示了一个电路基础,通过该电路基础,感觉会聚到背角抑制性神经元上可以调节运动输出,以促进平滑运动和上下文适当的过渡。
    Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在日常实践中经常遇到的特发性三叉神经痛(TN)病例表明在病因发病机制中仍然需要阐明的重要差距。在这项研究中,通过压缩上颈脊髓的背角(DH),开发了一种新型的TN动物模型。
    方法:18只大白兔平均分为3组,即控制(CG),sham(SG),脊髓压迫(SCC)组。在SCC组中,在C3水平向左侧施加外部压力。在SG中进行了背侧半椎板切除术,手术侧关闭,没有压迫。对照组未实施任何程序。SC的样本,TG,离子是在七天后服用的。对于组织化学染色,使用苏木精、伊红和甲苯胺蓝对髓鞘损伤和轴突进行评分,分别。免疫组织化学,原子核,凋亡指数,星形胶质细胞活性,小胶质细胞标记,和CD11b进行评估。
    结果:在SCC组中,在同侧观察到机械性异常性疼痛。此外,TG和ION均因SC压缩而部分受损,与CG相比,这导致了显着的组织病理学变化,并增加了SG和SCC组的所有标志物的表达。组织损伤明显增加,凋亡细胞核数量的增加,凋亡指数的增加,星形胶质细胞增生的迹象,和小胶质细胞的激增。SG组显著增加,而在SCC组中观察到更明显的显著增加.透射电镜显示髓鞘损伤,线粒体破坏,和增加锚定颗粒。在对侧脊髓中观察到较小程度的类似变化。
    结论:同侧三叉神经疼痛是由于上颈椎SCC引起的。临床发现得到免疫组织化学和超微结构变化的支持。因此,由于上子宫颈受压而引起的DH改变应被视为特发性TN的潜在原因。
    BACKGROUND: Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord.
    METHODS: Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated.
    RESULTS: Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord.
    CONCLUSIONS: Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    我们什么时候第一次经历疼痛?为了解决这个问题,我们需要知道发育中的神经系统如何在生命早期处理潜在的或真正的组织损伤刺激。在新生儿中,伤害感受通过反射避免组织损伤和参与父母的帮助来维持生命。重要的是,伤害性感受也是体验和学习疼痛以及确定成人疼痛敏感性水平的起点。这次审查,源于贝利斯-斯塔林奖讲座,专注于脊髓早期伤害性回路的基本发育神经生理学,脑干和皮层构成了我们第一次疼痛经历的基石。
    When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在男性中,而不是女性中,脑源性神经营养因子(BDNF)在神经性疼痛的发生和维持中起着必要的作用。受损周围神经的传入末端将集落刺激因子(CSF-1)和其他介质释放到背角。这些转化了背角小胶质细胞的表型,从而表达P2X4嘌呤受体。神经元衍生的ATP激活这些受体促进BDNF释放。这种小胶质细胞衍生的BDNF增加了兴奋性背角神经元的突触激活,并减少了抑制性神经元的突触激活。它还改变了神经元氯化物梯度,从而将GABA的正常抑制作用转化为激发。到目前为止,还没有定义的过程,这种减弱的抑制增加NMDA受体功能。BDNF还促进促炎细胞因子从星形胶质细胞的释放。所有这些作用最终导致背角兴奋性增加,这是许多形式的神经性疼痛的基础。周围神经损伤也改变了丘脑结构的兴奋性,皮层和中脑边缘系统,负责疼痛感知和产生的共病,如焦虑和抑郁。来自雄性啮齿动物的大量证据表明,对脊柱上疼痛处理结构的这种优先调节也涉及小胶质细胞衍生的BDNF的作用。讨论了促进疼痛信号传导结构中BDNF优先释放的可能机制。在女性中,入侵的T淋巴细胞会增加背角的兴奋性,但仍有待确定类似的过程是否在脊柱上结构中起作用。尽管BDNF和TrkB受体在疼痛病因学中具有普遍存在的作用,但它们都不代表潜在的治疗靶标。
    In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UNASSIGNED: Preclinical and clinical evidence suggests that cannabis has potential analgesic properties. However, cannabinoid receptor expression and localization within spinal cord pain processing circuits remain to be characterized across sex and species.
    UNASSIGNED: We aimed to investigate the differential expression of the cannabinoid type 1 (CB1) receptor across dorsal horn laminae and cell populations in male and female adult rats and humans.
    UNASSIGNED: To investigate and quantify CB1 receptor expression in the spinal dorsal horn across species, we refined immunohistochemical procedures for successful rat and human fixed tissue staining and confocal imaging. Immunohistochemical results were complemented with analysis of CB1 gene (CNR1) expression within rodent and human dorsal horn using single-cell/nuclei RNA sequencing data sets.
    UNASSIGNED: We found that CB1 was preferentially localized to the neuropil within the superficial dorsal horn of both rats and humans, with CB1 somatic staining across dorsal horn laminae. CB1 receptor immunoreactivity was significantly higher in the superficial dorsal horn compared to the deeper dorsal horn laminae for both rats and humans, which was conserved across sex. Interestingly, we found that CB1 immunoreactivity was not primarily localized to peptidergic afferents in rats and humans and that CNR1 (CB1) but not CNR2 (CB2) was robustly expressed in dorsal horn neuron subpopulations of both rodents and humans.
    UNASSIGNED: The conserved preferential expression of CB1 receptors in the superficial dorsal horn in male and female rodents and humans has significant implications for understanding the roles of this cannabinoid receptor in spinal mechanisms of nociception and analgesia.
    Contexte: Les données probantes précliniques et cliniques indiquent que le cannabis possède des propriétés analgésiques potentielles. Cependant, l’expression et la localisation des récepteurs cannabinoïdes au sein des circuits de traitement de la douleur de la moelle épinière restent à caractériser selon le sexe et les espèces.Objectifs: Nous avons cherché à étudier l’expression différenciée du récepteur cannabinoïde de type 1 (CB1) dans les différentes couches de la corne dorsale et les populations cellulaires chez des rats et des êtres humains adultes de sexe masculin et féminin.Méthodes: Pour étudier et quantifier l’expression des récepteurs CB1 dans la corne dorsale de la moelle épinière chez différentes espèces, nous avons perfectionné les procédures d’immunohistochimie pour obtenir des résultats de coloration réussis sur des échantillons de tissus provenant de rats et d’êtres humains, ainsi que des images confocales. Les résultats immunohistochimiques ont été complétés par l’analyse de l’expression du gène CB1 (CNR1) dans la corne dorsale des rongeurs et des humains en utilisant des ensembles de données de séquençage d’ARN au niveau des cellules uniques et des noyaux.Résultats: Nous avons constaté que le CB1 était principalement localisé dans le neuropile au sein de la corne dorsale superficielle chez les rats et les humains, avec une coloration somatique du CB1 dans les différentes couches de la corne dorsale. Chez les deux espèces, l’immunoréactivité du récepteur CB1 était significativement plus élevée dans la couche superficielle de la corne dorsale par rapport aux couches plus profondes, indépendamment du sexe. De manière intéressante, nous avons constaté que l’immunoréactivité du CB1 n’était pas principalement localisée dans les afférences peptidergiques chez les rats et les humains. De plus, nous avons observé une forte expression du gène CNR1 (CB1), mais pas du CNR2 (CB2), au sein de sous-populations de neurones de la corne dorsale chez les rongeurs et les êtres humains.Conclusions: La localisation privilégiée et constante des récepteurs CB1 dans la couche superficielle de la corne dorsale chez les rongeurs et les humains, quel que soit leur sexe, revêt une importance majeure pour la compréhension des fonctions de ce récepteur des cannabinoïdes dans les mécanismes médullaires de la nociception et de l’analgésie.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然小胶质细胞与慢性疼痛有关,脊髓小胶质细胞在瘙痒调节中的作用尚不清楚。在这项研究中,我们在咪喹莫特(IMQ)诱导的牛皮癣小鼠模型中表征了脊髓小胶质细胞的激活。局部施用IMQ后,在整个脊髓中观察到肥大性(活化)小胶质细胞。此外,小胶质细胞标志物和炎症介质的mRNA表达上调。使用树脂毒素消融与瘙痒相关的感觉神经元可减少与瘙痒相关的抓挠行为和脊髓背角肥大小胶质细胞的数量。最后,在IMQ应用后,感觉神经元输入可能部分有助于脊髓小胶质细胞的激活.
    Although microglia are associated with chronic pain, the role of spinal microglia in the regulation of itch remains unclear. In this study, we characterized spinal microglial activation in a mouse model of imiquimod (IMQ)-induced psoriasis. Hypertrophic (activated) microglia were observed throughout the spinal cord after the topical application of IMQ. Furthermore, the mRNA expression of microglial markers and inflammatory mediators was upregulated. Ablation of itch-related sensory neurons using resiniferatoxin decreased itch-related scratching behavior and the number of hypertrophic microglia in the spinal dorsal horn. Conclusively, sensory neuron input may partially contribute to spinal microglial activation after IMQ application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经性疼痛可能是由于受伤导致的,或神经系统疾病。众所周知,这是难以治疗的。周围神经损伤促进雪旺细胞活化和免疫活性细胞侵入损伤部位,脊髓和较高的感觉结构,如丘脑和扣带回和感觉皮质。各种细胞因子,趋化因子,生长因子,单胺和神经肽影响神经元之间的双向信号,神经胶质和免疫细胞.这促进了原发性传入的持续过度兴奋和自发活动,这对于疼痛的发作和持续以及脊髓和脊柱上结构中感觉信息的误处理至关重要。目前对疼痛病因和药物靶标鉴定的大部分理解来源于对啮齿动物模型中周围神经损伤后果的研究。尽管大量的信息已经到来,这些信息在临床领域的翻译很少。很少,如果有的话,自1990年代中期以来,主要的治疗方法已经出现。这可能反映出未能认识到男性与男性的疼痛处理差异。女性,人对不同类型损伤的细胞反应差异和疼痛处理差异动物。寻求弥合这一知识差距的基础科学和临床方法包括更好地评估动物模型中的疼痛。使用更好地模仿人类疾病的疼痛模型,根据疾病的体征和症状的定量评估,对人类疼痛表型进行分层。这可以为个体患者带来更个性化和有效的治疗。意义陈述:迫切需要找到治疗神经性疼痛的新疗法。尽管经典动物模型已经揭示了疼痛病因的基本特征,如外周和中枢致敏以及一些涉及的分子和细胞机制,他们没有充分模拟可能在临床中引起神经性疼痛的多种疾病状态或损伤。这篇综述旨在整合来自寻求理解神经性疼痛的多个学科的信息;包括免疫学,细胞生物学,电生理学和生物物理学,解剖学,细胞生物学,神经学,分子生物学,药理学和行为科学。除此之外,它强调了基础科学和临床实践的持续改进,这将产生改进的疼痛管理方法。
    Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990\'s. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号