dorsal horn

背角
  • 文章类型: Journal Article
    最近的工作表明,脊髓D1和D5多巴胺受体(D1/D5Rs)的激活可促进非Hebbian长期增强(LTP)在脊髓投射神经元的初级传入突触上。然而,在脊髓伤害性回路中驱动非HebbianLTP的D1/D5R的细胞定位仍然未知,也不清楚D1/D5R信号是否必须与感觉输入同时发生,以促进这些突触的非HebbianLTP。在这里,我们使用来自I层脊髓臂神经元的D1R或D5Rs的细胞类型选择性敲除来研究这些问题,使用基于Cre重组酶的遗传策略,任何性别的成年小鼠的背根神经节(DRG)神经元或星形胶质细胞。在选择性D1/D5R激动剂SKF82958的存在下,初级传入神经的低频刺激引起的LTP在脊髓臂神经元中D1R或D5R敲低后持续存在,这表明突触后D1/D5R信号对于感觉突触的非Hebbian可塑性是不必要的,这些关键输出神经元的浅层背角(SDH)。同样,DRG神经元中D1Rs或D5Rs的敲除未能影响I层投射神经元中SKF82958启用的LTP.相比之下,SKF82958诱导的LTP被脊髓星形胶质细胞中D1R或D5R的敲低所抑制。此外,数据表明,脊髓星形胶质细胞中D1R/D5Rs的激活可以逆转录或主动驱动脊髓臂神经元中的非HebbianLTP。总的来说,这些结果表明,星形胶质细胞中的多巴胺能信号可以强烈促进SDH中的活性依赖性LTP,这被预测会显著增强从脊髓到大脑的上升伤害性传递的放大。意义陈述感觉突触对层I投射神经元的长期增强(LTP)代表了一种关键机制,通过这种机制,脊髓浅层背角(SDH)可以增强对大脑的上升伤害性传递。在这里,我们证明了在脊髓星形胶质细胞中表达的D1或D5多巴胺受体的激活在小鼠脊髓背臂神经元的初级传入输入时促进了非HebbianLTP。此外,星形胶质细胞D1/D5R信号不仅能逆转最近活跃的感觉突触,而且在随后的刺激后,还主动启动突触以进行LTP。这些结果确定了星形胶质细胞上的多巴胺能信号作为SDH中突触化可塑性的关键调节剂,并表明星形胶质细胞D1/D5Rs可以作为增益控制,使脊髓伤害性传递过度放大。
    Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓背角抑制对感觉输入的处理至关重要,其损害导致机械性异常性疼痛。这种减少的抑制作用是如何发生的,以及它的恢复是否减轻了异常疼痛,人们知之甚少。这里,我们表明,抑制性音调丧失的关键步骤是抑制性小白蛋白(PV)表达神经元(PVN)的放电模式的变化。我们的结果表明,PV,一种钙结合蛋白,通过使PVN能够维持高频补音放电模式来控制PVN的放电活动。神经损伤后,PVN过渡到适应性放电并降低其PV表达。有趣的是,降低PV对于机械性异常疼痛的发展和PVN向适应性放电的过渡是必要和充分的。放电模式的这种转变是由于钙激活钾(SK)通道的募集,并在慢性疼痛期间阻断它们恢复正常的滋补放电并缓解慢性疼痛。我们的发现表明,PV对于控制PVN的放电模式和预防异常性疼痛至关重要。开发操纵这些机制的方法可能会导致缓解慢性疼痛的不同策略。
    Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED: Preclinical and clinical evidence suggests that cannabis has potential analgesic properties. However, cannabinoid receptor expression and localization within spinal cord pain processing circuits remain to be characterized across sex and species.
    UNASSIGNED: We aimed to investigate the differential expression of the cannabinoid type 1 (CB1) receptor across dorsal horn laminae and cell populations in male and female adult rats and humans.
    UNASSIGNED: To investigate and quantify CB1 receptor expression in the spinal dorsal horn across species, we refined immunohistochemical procedures for successful rat and human fixed tissue staining and confocal imaging. Immunohistochemical results were complemented with analysis of CB1 gene (CNR1) expression within rodent and human dorsal horn using single-cell/nuclei RNA sequencing data sets.
    UNASSIGNED: We found that CB1 was preferentially localized to the neuropil within the superficial dorsal horn of both rats and humans, with CB1 somatic staining across dorsal horn laminae. CB1 receptor immunoreactivity was significantly higher in the superficial dorsal horn compared to the deeper dorsal horn laminae for both rats and humans, which was conserved across sex. Interestingly, we found that CB1 immunoreactivity was not primarily localized to peptidergic afferents in rats and humans and that CNR1 (CB1) but not CNR2 (CB2) was robustly expressed in dorsal horn neuron subpopulations of both rodents and humans.
    UNASSIGNED: The conserved preferential expression of CB1 receptors in the superficial dorsal horn in male and female rodents and humans has significant implications for understanding the roles of this cannabinoid receptor in spinal mechanisms of nociception and analgesia.
    Contexte: Les données probantes précliniques et cliniques indiquent que le cannabis possède des propriétés analgésiques potentielles. Cependant, l’expression et la localisation des récepteurs cannabinoïdes au sein des circuits de traitement de la douleur de la moelle épinière restent à caractériser selon le sexe et les espèces.Objectifs: Nous avons cherché à étudier l’expression différenciée du récepteur cannabinoïde de type 1 (CB1) dans les différentes couches de la corne dorsale et les populations cellulaires chez des rats et des êtres humains adultes de sexe masculin et féminin.Méthodes: Pour étudier et quantifier l’expression des récepteurs CB1 dans la corne dorsale de la moelle épinière chez différentes espèces, nous avons perfectionné les procédures d’immunohistochimie pour obtenir des résultats de coloration réussis sur des échantillons de tissus provenant de rats et d’êtres humains, ainsi que des images confocales. Les résultats immunohistochimiques ont été complétés par l’analyse de l’expression du gène CB1 (CNR1) dans la corne dorsale des rongeurs et des humains en utilisant des ensembles de données de séquençage d’ARN au niveau des cellules uniques et des noyaux.Résultats: Nous avons constaté que le CB1 était principalement localisé dans le neuropile au sein de la corne dorsale superficielle chez les rats et les humains, avec une coloration somatique du CB1 dans les différentes couches de la corne dorsale. Chez les deux espèces, l’immunoréactivité du récepteur CB1 était significativement plus élevée dans la couche superficielle de la corne dorsale par rapport aux couches plus profondes, indépendamment du sexe. De manière intéressante, nous avons constaté que l’immunoréactivité du CB1 n’était pas principalement localisée dans les afférences peptidergiques chez les rats et les humains. De plus, nous avons observé une forte expression du gène CNR1 (CB1), mais pas du CNR2 (CB2), au sein de sous-populations de neurones de la corne dorsale chez les rongeurs et les êtres humains.Conclusions: La localisation privilégiée et constante des récepteurs CB1 dans la couche superficielle de la corne dorsale chez les rongeurs et les humains, quel que soit leur sexe, revêt une importance majeure pour la compréhension des fonctions de ce récepteur des cannabinoïdes dans les mécanismes médullaires de la nociception et de l’analgésie.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经性疼痛可能是由于受伤导致的,或神经系统疾病。众所周知,这是难以治疗的。周围神经损伤促进雪旺细胞活化和免疫活性细胞侵入损伤部位,脊髓和较高的感觉结构,如丘脑和扣带回和感觉皮质。各种细胞因子,趋化因子,生长因子,单胺和神经肽影响神经元之间的双向信号,神经胶质和免疫细胞.这促进了原发性传入的持续过度兴奋和自发活动,这对于疼痛的发作和持续以及脊髓和脊柱上结构中感觉信息的误处理至关重要。目前对疼痛病因和药物靶标鉴定的大部分理解来源于对啮齿动物模型中周围神经损伤后果的研究。尽管大量的信息已经到来,这些信息在临床领域的翻译很少。很少,如果有的话,自1990年代中期以来,主要的治疗方法已经出现。这可能反映出未能认识到男性与男性的疼痛处理差异。女性,人对不同类型损伤的细胞反应差异和疼痛处理差异动物。寻求弥合这一知识差距的基础科学和临床方法包括更好地评估动物模型中的疼痛。使用更好地模仿人类疾病的疼痛模型,根据疾病的体征和症状的定量评估,对人类疼痛表型进行分层。这可以为个体患者带来更个性化和有效的治疗。意义陈述:迫切需要找到治疗神经性疼痛的新疗法。尽管经典动物模型已经揭示了疼痛病因的基本特征,如外周和中枢致敏以及一些涉及的分子和细胞机制,他们没有充分模拟可能在临床中引起神经性疼痛的多种疾病状态或损伤。这篇综述旨在整合来自寻求理解神经性疼痛的多个学科的信息;包括免疫学,细胞生物学,电生理学和生物物理学,解剖学,细胞生物学,神经学,分子生物学,药理学和行为科学。除此之外,它强调了基础科学和临床实践的持续改进,这将产生改进的疼痛管理方法。
    Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990\'s. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光生物调节是疼痛的有效治疗方法。我们先前报道,直接激光照射暴露的坐骨神经会抑制机械刺激诱发的大鼠脊髓背角放电,对应于有害刺激。然而,经皮激光照射在临床实践中,目前还不清楚它是否能抑制背角的放电。在这项研究中,我们研究了经皮激光照射坐骨神经是否会抑制放电。将电极插入背角的椎板II中,并使用vonFrey丝(vFF)在激光辐照前后施加机械刺激。我们的发现表明,经皮激光照射抑制26.0gvFF诱发的放电,对应于有害刺激,但没有抑制0.6g和8.0gvFF诱发的放电。辐照后(15分钟后)和辐照前的发射比几乎与直接和经皮辐照相同。植入坐骨神经中的光电二极管传感器显示,经皮到达坐骨神经的功率密度衰减到皮肤上的功率密度的约10%。到达神经的激光强度与其作用之间的关系对于临床实践中更适当地设置激光条件可能是潜在有用的。
    Photobiomodulation is an effective treatment for pain. We previously reported that the direct laser irradiation of the exposed sciatic nerve inhibited firing in the rat spinal dorsal horn evoked by mechanical stimulation, corresponding to the noxious stimulus. However, percutaneous laser irradiation is used in clinical practice, and it is unclear whether it can inhibit the firing of the dorsal horn. In this study, we investigated whether the percutaneous laser irradiation of the sciatic nerve inhibits firing. Electrodes were inserted into the lamina II of the dorsal horn, and mechanical stimulation was applied using von Frey filaments (vFFs) with both pre and post laser irradiation. Our findings show that percutaneous laser irradiation inhibited 26.0 g vFF-evoked firing, which corresponded to the noxious stimulus, but did not inhibit 0.6 g and 8.0 g vFF-evoked firing. The post- (15 min after) and pre-irradiation firing ratios were almost the same as those for direct and percutaneous irradiation. A photodiode sensor implanted in the sciatic nerve showed that the power density reaching the sciatic nerve percutaneously was attenuated to approximately 10% of that on the skin. The relationship between the laser intensity reaching the nerve and its effect could be potentially useful for a more appropriate setting of laser conditions in clinical practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    镜像疼痛是由伤害性处理网络中的病理改变引起的,该网络控制主要传入输入的功能偏侧化。尽管许多与腰椎传入系统功能障碍有关的临床综合征与镜像疼痛有关,其形态生理学底物和诱导机制仍知之甚少。因此,我们使用两种性别的年轻大鼠的离体脊髓制备来研究对脊髓伤害性投射区域层I中神经元的对侧传入输入的组织和处理。我们表明,截尾的初级传入分支到达对侧层I,27%的神经元,包括投射神经元,从对侧Aδ和C纤维接收单突触和/或多突触兴奋性驱动。所有这些神经元也接受同侧输入,暗示他们参与双边信息处理。我们的数据进一步表明,对侧Aδ和C纤维输入处于多种形式的抑制控制下。传入驱动的突触前抑制和/或背角网络的去抑制的衰减增加了对侧对I层神经元的兴奋驱动及其唤起动作电位的能力。此外,对侧Aβδ纤维突触前控制同侧C纤维输入到I层神经元。因此,这些结果表明,一些腰I层神经元连接到对侧传入系统,其输入,在正常情况下,受到抑制控制。抑制途径的病理性抑制可以打开控制对侧信息流到伤害性投射神经元的大门,因此,有助于诱导超敏反应和镜像疼痛。意义陈述我们表明对侧Aδ和C传入提供腰椎I层神经元。对侧输入处于各种形式的抑制控制下,并且其自身控制同侧输入。抑制途径的抑制会增加对层I神经元的伤害性驱动,并可能导致对侧超敏反应和镜像疼痛的诱导。
    Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aβδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    NaV1.7,一种膜结合电压门控钠通道,优先沿着初级感觉神经元表达,包括他们的外周和中枢神经末梢,轴突,和背根神经节内的躯体,在放大膜去极化和疼痛神经传递中起着不可或缺的作用。编码NaV1.7,SCN9A,与人类痛觉的完全丧失或疼痛加剧有关,分别。作为人类遗传验证支持的一个诱人的疼痛目标,已经开发了许多化合物来抑制NaV1.7,但在临床试验中令人失望。其根本原因尚不清楚,但是最近的报道表明,在伤害性感受器传入的中央末端抑制NaV1.7对于通过药理抑制NaV1.7来缓解疼痛至关重要。我们首次报道NaV1.7mRNA在人脊髓背角的假定投射神经元(NK1R)中表达,主要在1层和2层,以及深背角神经元和腹角运动神经元中。在1-2层终止的感觉神经元的中央轴突中发现了NaV1.7蛋白,但在驻留的脊髓背角神经元的轴突初始段和进入前连合的轴突中也检测到。鉴于投射神经元对于将伤害性信息从背角传递到大脑至关重要,这些数据支持背角NaV1.7表达可能在具有SCN9A遗传突变的人类中观察到的疼痛表型中起未被重视的作用,并在临床试验中达到镇痛效果。
    NaV1.7, a membrane-bound voltage-gated sodium channel, is preferentially expressed along primary sensory neurons, including their peripheral & central nerve endings, axons, and soma within the dorsal root ganglia and plays an integral role in amplifying membrane depolarization and pain neurotransmission. Loss- and gain-of-function mutations in the gene encoding NaV1.7, SCN9A, are associated with a complete loss of pain sensation or exacerbated pain in humans, respectively. As an enticing pain target supported by human genetic validation, many compounds have been developed to inhibit NaV1.7 but have disappointed in clinical trials. The underlying reasons are still unclear, but recent reports suggest that inhibiting NaV1.7 in central terminals of nociceptor afferents is critical for achieving pain relief by pharmacological inhibition of NaV1.7. We report for the first time that NaV1.7 mRNA is expressed in putative projection neurons (NK1R+) in the human spinal dorsal horn, predominantly in lamina 1 and 2, as well as in deep dorsal horn neurons and motor neurons in the ventral horn. NaV1.7 protein was found in the central axons of sensory neurons terminating in lamina 1-2, but also was detected in the axon initial segment of resident spinal dorsal horn neurons and in axons entering the anterior commissure. Given that projection neurons are critical for conveying nociceptive information from the dorsal horn to the brain, these data support that dorsal horn NaV1.7 expression may play an unappreciated role in pain phenotypes observed in humans with genetic SCN9A mutations, and in achieving analgesic efficacy in clinical trials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    越来越多的文献支持大麻素作为疼痛病症的潜在治疗剂。慢性疼痛的发展与中脑背侧导水管周围灰质(dPAG)中内源性大麻素anandamide(AEA)的浓度降低有关,将合成大麻素微量注射到dPAG中具有抗伤害性。因此,本研究的目的是研究dPAG在大麻素介导的感觉抑制中的作用.鉴于dPAG中的大麻素也会引起交感神经兴奋,次要目标是评估交感神经反应和镇痛反应之间的协调性.将AEA显微注射到dPAG中,同时记录由后爪的高强度机械刺激引起的宽动态范围(WDR)背角神经元(DHN)的单个单位活动,同时伴有肾交感神经活动(RSNA),在麻醉的雄性大鼠中。微量注射到dPAG中的AEA降低了诱发的DHN活性(n=24单位),其中一半的AEA也引起交感神经兴奋。AEA作用由大麻素1受体介导,如用大麻素受体拮抗剂AM281局部预处理所证实。dPAG显微注射突触兴奋性DL-同型半胱氨酸(DLH)也降低了诱发的DHN活性(n=27个单位),但在所有情况下,这都伴随着交感神经兴奋。因此,dPAG引起的感觉抑制并不完全与交感神经兴奋有关,暗示离散的神经元回路。由于AEA在86%的尾部产生感觉抑制而没有交感神经作用,因此部位的后部位置可能会影响诱发反应,支持解剖学上不同的神经回路。这些数据表明大麻素信号的空间选择性操纵可以提供镇痛而没有潜在的有害自主神经激活。
    There is growing literature supporting cannabinoids as a potential therapeutic for pain conditions. The development of chronic pain has been associated with reduced concentrations of the endogenous cannabinoid anandamide (AEA) in the midbrain dorsal periaqueductal gray (dPAG), and microinjections of synthetic cannabinoids into the dPAG are antinociceptive. Therefore, the goal of this study was to examine the role of the dPAG in cannabinoid-mediated sensory inhibition. Given that cannabinoids in the dPAG also elicit sympathoexcitation, a secondary goal was to assess coordination between sympathetic and antinociceptive responses. AEA was microinjected into the dPAG while recording single unit activity of wide dynamic range (WDR) dorsal horn neurons (DHNs) evoked by high intensity mechanical stimulation of the hindpaw, concurrently with renal sympathetic nerve activity (RSNA), in anesthetized male rats. AEA microinjected into the dPAG decreased evoked DHN activity (n = 24 units), for half of which AEA also elicited sympathoexcitation. AEA actions were mediated by cannabinoid 1 receptors as confirmed by local pretreatment with the cannabinoid receptor antagonist AM281. dPAG microinjection of the synaptic excitant DL-homocysteic acid (DLH) also decreased evoked DHN activity (n = 27 units), but in all cases this was accompanied by sympathoexcitation. Thus, sensory inhibition elicited from the dPAG is not exclusively linked with sympathoexcitation, suggesting discrete neuronal circuits. The rostrocaudal location of sites may affect evoked responses as AEA produced sensory inhibition without sympathetic effects at 86 % of caudal compared to 25 % of rostral sites, supporting anatomically distinct neurocircuits. These data indicate that spatially selective manipulation of cannabinoid signaling could provide analgesia without potentially harmful autonomic activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    位于背角的脊髓中间神经元诱导初级传入去极化(PAD),控制传入末端的兴奋性。炎症后,PAD可达到有助于维持炎症和疼痛的击发阈值。我们的目的是研究背角神经元的集体行为,它与原发性传入的回火以及该系统中外周炎症的影响有关。在从未处理的成年小鼠或患有炎症预处理的小鼠获得的脊髓切片上进行实验。获得了来自背角神经元和初级传入组的同时记录,并使用机器学习方法来分析它们之间的有效连接。背角记录显示,群体爆发中来自不同神经元的自发动作电位分组。“这些以不规则的间隔发生,是由记录的所有类型的神经元的动作电位形成的。与天真相比,受治疗动物的种群爆发集中了更多的动作电位,起效更快,衰变更慢。微毒素的灌注破坏了种群爆发,并与传入的回火具有很强的时间相关性。有效的连通性分析可以精确定位与传入突触前或突触后关系的特定神经元。这些神经元中的许多具有自发放电的不规则快速爆发模式。我们得出的结论是,种群爆发包含从突触前神经元到传入神经的动作电位,这些动作电位可能控制其兴奋性。外周炎症可能增强这些神经元的同步性,增加在初级传入中触发动作电位的机会,并有助于中枢致敏。
    Spinal interneurons located in the dorsal horn induce primary afferent depolarization (PAD) controlling the excitability of the afferent\'s terminals. Following inflammation, PAD may reach firing threshold contributing to maintain inflammation and pain. Our aim was to study the collective behavior of dorsal horn neurons, its relation to backfiring of primary afferents and the effects of a peripheral inflammation in this system. Experiments were performed on slices of spinal cord obtained from naïve adult mice or mice that had suffered an inflammatory pretreatment. Simultaneous recordings from groups of dorsal horn neurons and primary afferents were obtained and machine-learning methodology was used to analyze effective connectivity between them. Dorsal horn recordings showed grouping of spontaneous action potentials from different neurons in \"population bursts.\" These occurred at irregular intervals and were formed by action potentials from all classes of neurons recorded. Compared to naïve, population bursts from treated animals concentrated more action potentials, had a faster onset and a slower decay. Population bursts were disrupted by perfusion of picrotoxin and held a strong temporal correlation with backfiring of afferents. Effective connectivity analysis allowed pinpointing specific neurons holding pre- or post-synaptic relation to the afferents. Many of these neurons had an irregular fast bursting pattern of spontaneous firing. We conclude that population bursts contain action potentials from neurons presynaptic to the afferents which are likely to control their excitability. Peripheral inflammation may enhance synchrony in these neurons, increasing the chance of triggering action potentials in primary afferents and contributing toward central sensitization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触传递的中心原理是动作电位诱导的突触前神经递质释放仅通过Ca2依赖性分泌(CDS)发生。对Ca2非依赖性但电压依赖性分泌(CiVDS)的发现和机理研究表明,动作电位本身足以触发哺乳动物初级感觉和交感神经元体中的神经传递。还有一个关键问题,然而,CIVDS是否有助于中枢突触传递。这里,我们报告,在体外从突触前(背根神经节)到突触后(脊髓背角)神经元的中枢传递中,(i)兴奋性突触后电流(EPSC)由通过CiVDS(高达87%)和CDS的谷氨酸传递介导;(ii)CiVDS介导的EPSC独立于细胞外和细胞内Ca2+;(iii)CiVDS在囊泡再循环方面比CDS快,短期抑制少得多;(iv)CiVDS的融合机制包括Cav2.2(电压融合传感器)和SNARE(孔)一起,活性诱导的EPSC的重要组成部分是由中枢突触中的CiVDS介导的。
    A central principle of synaptic transmission is that action potential-induced presynaptic neurotransmitter release occurs exclusively via Ca2+ -dependent secretion (CDS). The discovery and mechanistic investigations of Ca2+ -independent but voltage-dependent secretion (CiVDS) have demonstrated that the action potential per se is sufficient to trigger neurotransmission in the somata of primary sensory and sympathetic neurons in mammals. One key question remains, however, whether CiVDS contributes to central synaptic transmission. Here, we report, in the central transmission from presynaptic (dorsal root ganglion) to postsynaptic (spinal dorsal horn) neurons in vitro, (i) excitatory postsynaptic currents (EPSCs) are mediated by glutamate transmission through both CiVDS (up to 87%) and CDS; (ii) CiVDS-mediated EPSCs are independent of extracellular and intracellular Ca2+ ; (iii) CiVDS is faster than CDS in vesicle recycling with much less short-term depression; (iv) the fusion machinery of CiVDS includes Cav2.2 (voltage sensor) and SNARE (fusion pore). Together, an essential component of activity-induced EPSCs is mediated by CiVDS in a central synapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号