camelpox virus

  • 文章类型: Journal Article
    预防和控制骆驼痘可以通过有效的疫苗接种来实现。有限数量的同源减毒疫苗已经商业化。在这项研究中,我们报告了在Vero细胞中经过175次减毒传代后,骆驼痘病毒疫苗株“CAMPOX疫苗”的基因组序列草案。
    Prevention and control of camelpox can be achieved by efficient vaccination. A limited number of homologous attenuated vaccines have been commercialized. In this study, we report the draft genome sequence of camelpox virus vaccine strain \"CAMPOX vaccine\" after 175 passages of attenuation in Vero cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇综述提供了人类特异性正痘病毒(OPXV)的影响的简要历史,天花病毒,对人类来说,回忆起疫苗接种对根除这种疾病的重要性,并讨论了停止OPXV疫苗接种的后果。这些后果之一是人畜共患OPXV疾病的出现,包括猴痘病毒(MPXV)。本手稿的重点是比较兽医物种和人类中与人畜共患OPXV感染相关的病理学。有效识别痘病毒病变和其他,在多个物种中更微妙的疾病迹象对于防止痘病毒感染的进一步传播至关重要。另外还包括在MPXV感染的动物模型中观察到的病理学概要,最近MPXV在人类中的传播,并讨论了这种病毒在欧洲和美洲持续存在的可能性。
    This review provides a brief history of the impacts that a human-specific Orthopoxvirus (OPXV), Variola virus, had on mankind, recalls how critical vaccination was for the eradication of this disease, and discusses the consequences of discontinuing vaccination against OPXV. One of these consequences is the emergence of zoonotic OPXV diseases, including Monkeypox virus (MPXV). The focus of this manuscript is to compare pathology associated with zoonotic OPXV infection in veterinary species and in humans. Efficient recognition of poxvirus lesions and other, more subtle signs of disease in multiple species is critical to prevent further spread of poxvirus infections. Additionally included are a synopsis of the pathology observed in animal models of MPXV infection, the recent spread of MPXV among humans, and a discussion of the potential for this virus to persist in Europe and the Americas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Camelpox is an infectious viral disease of camels reported in all the camel-breeding areas of Africa, north of the equator, the Middle East and Asia. It causes huge economic loss to the camel industry. We developed a live camelpox virus vaccine candidate using an attenuated strain and evaluated its safety, immunogenicity and protective efficacy in camels. The attenuated virus strain was generated from the camelpox wild-type strain M-96 by 40 consecutive passages on the chorioallantoic membrane of 11-day-old embryonated chicken eggs, henceforth called KM-40 strain. Reversion to virulence of the KM-40 strain was evaluated in camels by three serial passages, confirmed its inability to revert to virulence and its overdose administration was also found safe. Studies of immunogenicity and protective efficacy of the candidate vaccine KM-40 strain in camels was carried out using the dose of 5 x 104.0 EID50. Our data showed complete protection against the challenge infection using the virulent wild-type camelpox virus strain M-96 (dose of 105.0 EID50) which was evaluated at 1, 3, 6 and 12 months post vaccination. In summary, our candidate live attenuated egg-based camelpox vaccine strain KM-40 was found safe, protective, and thus has the potential to use safely in field conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Camelpox is the most infectious and economically important disease of camelids that causes significant morbidity and mortality rates. Several live attenuated vaccines against Camelpox virus (CMLV) are produced worldwide by passaging field isolates in cell culture. Sequence of a high passage Saudi isolate of CMLV was previously found closely resembled Vaccinia virus (VACV).
    To determine whether other high cell culture passage CMLV isolates are genetically resemble VACV and further to explore the possible mechanism of the resemblance.
    We performed polymerase chain reaction and DNA sequence analysis of A-type inclusion body protein (ATIP), L1R, and open reading frame (ORF) 185 genes on different cell culture passage levels of a field isolate, two high passage vaccines, wild-type, and reference strains of CMLV.
    We demonstrate that additional two high passage attenuated vaccine candidate from Sudan and UAE likewise contain sequences resembling VACV more than CMLV. Furthermore, sequence analysis of the ATIP gene of selected virus passages in cell culture revealed that the shift to VACV-like occurred between passage 11 and 20 and up to the 10th passage the genome still resembles wild-type virus. This observation was further confirmed by recombination analysis which indicated recombination events at ATIP and ORF185 genes occurred at higher passages.
    We confirmed that the cell culture passage CMLV turns to resemble VACV after cell culture passage and concluded that the resemblance may not be a result of contamination or misidentification as previously thought but could be due to recombination events that occurred during the passage process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Orthopoxviruses (OPVs) have broad host range infecting a variety of species along with gene-specific determinants. Several genes including haemagglutinin (HA) are used for differentiation of OPVs. Among poxviruses, OPVs are sole members encoding HA protein as part of extracellular enveloped virion membrane. Camelpox virus (CMLV) causes an important contagious disease affecting mainly young camels, endemic to Indian subcontinent, Africa and the Middle East. This study describes the sequence features and phylogenetic analysis of HA gene (homologue of VACV A56R) of Indian CMLV isolates. Comparative analysis of CMLV HA gene revealed conserved nature within CMLVs but considerable variability was observed between various species of OPVs. Most Indian CMLV isolates showed 99.5%-100% and 96.3%-100% identity, at nucleotide (nt) and amino acid (aa) levels respectively, among themselves and with CMLV-M96 strain. Importantly, Indian CMLV strains along with CMLV-M96 showed deletion of seven nucleotides resulting in frameshift mutation at C-terminus of HA protein. Phylogenetic analysis displayed distinct clustering among CMLVs which might point to the circulation of diverse CMLV strains in nature. Despite different host specificity of OPVs, comparative sequence analysis of HA protein showed highly conserved N-terminal Ig V-set functional domain with tandem repeats. Understanding of molecular diversity of CMLVs and structural domains of HA protein will help in the elucidation of molecular mechanisms for immune evasion and design of novel antivirals for OPVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2016年,以色列报告了骆驼皮肤病变的疾病爆发。为了确定这种疾病的病因,我们采用了多学科诊断方法。病变物质的透射电子显微镜(TEM)分析显示存在类正痘病毒,根据其特征砖的形状。来自皮肤损伤的病毒成功感染绒毛尿囊膜,并在Vero细胞中诱导细胞病变效应,随后被正痘特异性抗体阳性染色。通过两个独立的qPCR对病毒进行了明确的鉴定,其中之一是在这项研究中开发的,然后对病毒基因组的几个区域进行测序。qPCR和测序结果证实了骆驼痘病毒(CMLV)的存在,并表明它不同于先前注释的可从GenBank获得的CMLV序列。这是以色列首例CMLV病例,和隔离的CMLV亚型的第一个描述。
    An outbreak of a disease in camels with skin lesions was reported in Israel during 2016. To identify the etiological agent of this illness, we employed a multidisciplinary diagnostic approach. Transmission electron microscopy (TEM) analysis of lesion material revealed the presence of an orthopox-like virus, based on its characteristic brick shape. The virus from the skin lesions successfully infected chorioallantoic membranes and induced cytopathic effect in Vero cells, which were subsequently positively stained by an orthopox-specific antibody. The definite identification of the virus was accomplished by two independent qPCR, one of which was developed in this study, followed by sequencing of several regions of the viral genome. The qPCR and sequencing results confirmed the presence of camelpox virus (CMLV), and indicated that it is different from the previously annotated CMLV sequence available from GenBank. This is the first reported case of CMLV in Israel, and the first description of the isolated CMLV subtype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Camelpox virus (CMLV), a close variant of variola virus (VARV) infects camels worldwide. The zoonotic infections reported from India signify the need to study the host-range genes-responsible for host tropism. We report sequence and phylogenetic analysis of five host-range genes: cytokine response modifier B (crmB), chemokine binding protein (ckbp), viral schlafen-like (v-slfn), myxomavirus T4-like (M-T4-like) and b5r of CMLVs isolated from outbreaks in India. Comparative analysis revealed that these genes are conserved among CMLVs and shared 94.5-100 % identity at both nucleotide (nt) and amino acid (aa) levels. All genes showed identity (59.3-98.4 %) with cowpox virus (CPXV) while three genes-crmB, ckbp and b5r showed similarity (92-96.5 %) with VARVs at both nt and aa levels. Interestingly, three consecutive serine residue insertions were observed in CKBP protein of CMLV-Delhi09 isolate which was similar to CPXV-BR and VACVs, besides five point mutations (K53Q, N67I, F84S, A127T and E182G) were also similar to zoonotic OPXVs. Further, few inconsistent point mutation(s) were also observed in other gene(s) among Indian CMLVs. These indicate that different strains of CMLVs are circulating in India and these mutations could play an important role in adaptation of CMLVs in humans. The phylogeny revealed clustering of all CMLVs together except CMLV-Delhi09 which grouped separately due to the presence of specific point mutations. However, the topology of the concatenated phylogeny showed close evolutionary relationship of CMLV with VARV and TATV followed by CPXV-RatGer09/1 from Germany. The availability of this genetic information will be useful in unveiling new strategies to control emerging zoonotic poxvirus infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Controlled Clinical Trial
    A strain of camelpox virus (CMLV) isolated in the Sudan was attenuated by serial passage in Vero cell monolayers for use as a future vaccine strain. The safety and potency of passage 115 virus (designated Sudan CMLV/115) was tested. Camels inoculated with CMLV/115 showed no clinical disease or skin lesions, developed low-level antibodies and cell-mediated immune response and resisted challenge with virulent wild-type CMLV. Field testing of the candidate vaccine showed that the developed vaccine induces immune response and is safe for young and pregnant camels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this study, thermostability of a Vero cell attenuated live camelpox vaccine under conventional lyophilization conditions has been evaluated. Three stabilizers were used separately for freeze-drying the vaccine and the stability of the vaccine, both in freeze-dried and reconstituted forms at different temperatures was assessed. The study revealed that the camelpox vaccine lyophilized with TAA stabilizer found superior with a shelf life of 44 months, 227 days, 22 days and 20 days at 4, 25, 37 and 45 °C, respectively followed by LS stabilizer. In terms of half-life, TAA stabilizer proved better followed by LS and BUGS stabilizers at all temperatures except at 25 °C in which LS found relatively superior. Among the four diluents viz. 1x PBS (phosphate buffered saline, pH 7.4), 0.85% NaCl, distilled water and 1 M MgSO4, PBS was a better diluent followed by 0.85% NaCl. Both the diluents maintained the infectivity titer more than the minimum effective dose (3 log10TCID50 with a maximum titre of 6.53 log10TCID50 in both the diluents) for 60 h at 37 and 45 °C. However, 1 M MgSO4 found less suitable for camelpox vaccine dilution. The study indicates that the TAA and 1× PBS are the choice of stabilizer and diluent, respectively for camelpox vaccine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Camelpox is considered as emerging public health problem during this decade due to increased reported cases and outbreaks in camels. Camelpox is a contagious, often sporadic, and notifiable skin disease of camelids and is socio-economically significant as it incurs considerable loss in terms of morbidity, mortality, loss of weight and reduction in milk yield and confined to camel-rearing countries. The causative agent, camelpox virus (CMLV) is genetically closely related to variola virus and has gained much attention from researchers due to its recent emergence in human. The virus carrying genes responsible for host immune evasion mechanisms owing to the threat posed by potential bio-warfare agents. Although the disease can be diagnosed based on clinical features, the similar confounding skin lesions necessitate identification, detection and differentiation of the CMLV by molecular techniques. Vaccines are available in some countries and the available live attenuated vaccine provides long-lasting immunity. Further, novel highly sensitive and specific techniques would be useful in the identification of emerging and re-emerging virus, thereby therapeutic, prophylactic, preventive measures would be applied in time to curtail further spread of camelpox like other zoonotic diseases. This review provide overview of the camelpox particularly on its epidemiology, pathogenesis and biology of the disease, diagnostic approaches and control measures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号