calcifying nanoparticles

  • 文章类型: Journal Article
    目的:钙化纳米颗粒(CNPs),被称为纳米细菌(NB),被认为与异位钙化有关。本研究旨在从牙周病患者的牙菌斑中分离和培养CNP,并研究其在揭示牙周病病因中的可能作用。
    方法:从30例牙周炎患者中取样进行CNP分离和培养。跟踪碱性磷酸酶(ALP)含量随时间的变化。阳性样品通过苏木精和伊红(HE)染色进行彻底的形态学鉴定,茜素红S(ARS),和透射电子显微镜(TEM)。CNPs的化学成分分析涉及钙(Ca)和磷(P)含量的测定,傅里叶变换红外光谱(FTIR),和X射线衍射(XRD)。
    结果:与66.67%(20/30)相比,龈下菌斑组的CNPs分离率为36.67%(11/30)。ALP活性在阳性之间变化,阴性组和对照组。形态学观察显示CNPs为圆形,椭圆形,和带有Ca沉积物的椭球颗粒。化学分析显示Ca/P比为0.6753。羟基,甲基,碳酸盐,磷酸盐,磷酸氢盐,用FTIR检测磷酸二氢盐和磷酸二氢盐;XRD检测的主要化学成分为羟基磷灰石和磷酸三钙。
    结论:在与牙周炎相关的牙菌斑中发现了CNPs,并显示出形成类似牙结石的钙化结构的潜力。然而,ALP在CNPs形成中的潜在参与需要更深入的探索,其作用的确切性质以及与牙周炎的相互关系也需要进一步全面的研究。
    OBJECTIVE: Calcifying nanoparticles (CNPs), referred to as nanobacteria (NB), are recognized to be associated with ectopic calcification. This study aims to isolate and culture CNPs from the dental plaque of patients with periodontal disease and investigate their possible role in unravelling the aetiology of periodontal disease.
    METHODS: Supragingival and subgingival plaques were sampled from 30 periodontitis patients for CNPs isolation and culture. Alkaline phosphatase (ALP) content changes were tracked over time. Positive samples underwent thorough morphological identification via hematoxylin and eosin (HE) staining, Alizarin red S (ARS), and transmission electron microscopy (TEM). The chemical composition of CNPs analysis involved calcium (Ca) and phosphorus (P) content determination, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
    RESULTS: The subgingival plaque dental group exhibited a higher CNPs isolation rate at 36.67% (11/30) compared to the supragingival dental plaque group at 66.67% (20/30). ALP activity varied among the positive, negative and control groups. Morphological observation characterized the CNPs as round, oval, and ellipsoid particles with Ca deposits. Chemical analysis revealed the Ca/P ratio was 0.6753. Hydroxyl, methyl, carbonate, phosphate, hydrogen phosphate, and dihydrogen phosphate were detected by FTIR; the main chemical components detected by XRD were hydroxyapatite and tricalcium phosphate.
    CONCLUSIONS: CNPs were found in periodontitis-related dental plaque and exhibited the potential to develop calcified structures resembling dental calculus. However, the potential involvement of ALP in CNPs formation requires deeper exploration, as does the precise nature of its role and the interrelation with periodontitis demand a further comprehensive investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾结石与慢性肾脏疾病的风险增加有关,终末期肾衰竭。这项研究致力于从活动性尿石症患者中分离纳米细菌,并研究某些抗生素单独或与某些药用植物的辐照草药提取物联合使用的体外和体内抗细菌活性。使用扫描(SEM)和透射(TEM)电子显微镜检测纳米细菌,蛋白质电泳(SDS-PAGE)和DNA图谱。评估了一些产生生物膜的纳米细菌分离株的抗微生物敏感性。测试了药用植物提取物对生长的影响。在生物膜生产中测试了最有效的提取物和抗生素之间的组合处理,蛋白质谱,释放260nm吸收材料,蛋白质含量,和最强大的生物膜生产者的超微结构。在雄性大鼠上评估了纳米细菌的体内研究及其用最有效的药物进行的治疗。在血清中测量肾功能;在肾组织中确定组织学检查和氧化应激参数。结果表明,链霉素,甲氧苄啶/磺胺甲恶唑,多西环素,在6kGy的辐照下,荷拉的水提取物具有抗细菌活性。同时,辐照的Khella和强力霉素的水提取物对微生物生长和生物膜产生具有更高的抑制作用。它们显着影响其细胞膜的强度以及随后的超微结构。此外,肾功能和组织学改变的改善证实了这些结果。可以得出结论,DO和辐照的khella的水提取物的组合具有抗纳米细菌诱导的肾毒性的作用。
    Kidney stones have been associated with an increased risk of chronic kidney diseases, end-stage renal failure. This study is devoted to isolate nanobacteria from patients with active urolithiasis and investigate the in vitro and in vivo antinanobacterial activity of some antibiotics alone or in combination with extracts of irradiated herbs from certain medicinal plants. Nanobacteria were detected using scanning (SEM) and transmission (TEM) electron microscopy, protein electrophoresis (SDS-PAGE) and DNA profile. The antimicrobial susceptibility of some biofilm-producing nanobacterial isolates was evaluated. The effect of medicinal plant extracts on growth was tested. A combination treatment between the most potent extracts and antibiotics was tested on biofilm production, protein profile, release of 260 nm absorbing material, protein content, and ultrastructure of the strongest biofilm producers. In vivo study of nanobacteria and its treatment by the most potent agents was evaluated on male rats. Renal function was measured in serum; histological examination and oxidative stress parameters were determined in kidney tissues. Results showed that streptomycin, trimethoprim/sulfamethoxazole, doxycycline, and water extracts of irradiated khella at 6 kGy had antinanobacterial activity. Meanwhile, the synergistic effect of the aqueous extract of irradiated Khella and doxycycline showed higher inhibition activity on microbial growth and biofilm production. They affected dramatically the strength of its cell membrane and subsequently its ultrastructure. Moreover, these results are confirmed by ameliorations in renal function and histological alterations. It could be concluded that the combination of DO and an aqueous extract of irradiated khella has an antinephrotoxic effect against nanobacteria-induced renal toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尚未分离出候选细菌Oomnitrophica,并且对其了解甚少。我们分析了72个新测序和349个现有的Omnitropha基因组,代表6类和276种,以及地球微生物组项目数据来评估栖息地,代谢特征和生活方式。我们应用了荧光激活细胞分选和差异大小过滤,并显示大多数Omnitropha是在水中发现的超小(〜0.2μm)细胞,沉积物和土壤。6类的Omnitropha基因组减少,但保持主要的生物合成和节能途径,包括乙酸生成(有或没有Wood-Ljungdahl途径)和不同的呼吸。至少64%的Omnitropha基因组编码典型的细菌共生体的基因簇,暗示与主人相关的生活方式。我们重新利用了以安山岩为主的土壤中的定量稳定同位素探测数据,玄武岩或花岗岩风化,并确定了3个具有高同位素吸收的科,与专性细菌捕食者一致。我们建议大多数Omnitropha作为捕食者或寄生虫栖息在各种生态系统中。
    Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种新型的基于细菌的药物递送系统,称为“特洛伊木马纳米细菌系统”,已经开发了纳米试剂通过细菌特异性麦芽糊精(MD)转运蛋白内化到工程细菌中。与将纳米试剂附着到细菌表面的方法相比,此木马系统具有更高的有效载荷和更好的稳定性。在癌症治疗中,特洛伊木马纳米细菌可以特异性地辨别肿瘤区域,然后穿透深部肿瘤组织。一旦进入肿瘤,由于抗肿瘤蛋白表达的综合作用,特洛伊木马纳米细菌系统能够破坏深层肿瘤组织(例如,肿瘤坏死因子-α,TNF-α)和光热特性。
    A novel bacteria-based drug delivery system, termed \"Trojan nanobacteria system\", has been developed in which nanoagents are internalized into engineered bacteria through bacteria-specific maltodextrin (MD) transporters. Compared to the method of attaching nanoagents to bacterial surfaces, this Trojan system features higher payloads and better stability. In cancer therapy, Trojan nanobacteria can specifically discriminate the tumor region and then penetrate deep tumor tissues. Once in the tumor, the Trojan nanobacteria systems are able to destroy deep tumor tissues due to the combined effects of antitumor protein expression (e.g., tumor necrosis factor-α, TNF-α) and photothermal properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Calciprotein particles (CPPs), which increasingly arise in the circulation during the disorders of mineral homeostasis, represent a double-edged sword protecting the human organism from extraskeletal calcification but potentially causing endothelial dysfunction. Existing models, however, failed to demonstrate the detrimental action of CPPs on endothelial cells (ECs) under flow. Here, we applied a flow culture system, where human arterial ECs were co-incubated with CPPs for 4 h, and a normolipidemic and normotensive rat model (10 daily intravenous injections of CPPs) to simulate the scenario occurring in vivo in the absence of confounding cardiovascular risk factors. Pathogenic effects of CPPs were investigated by RT-qPCR and Western blotting profiling of the endothelial lysate. CPPs were internalised within 1 h of circulation, inducing adhesion of peripheral blood mononuclear cells to ECs. Molecular profiling revealed that CPPs stimulated the expression of pro-inflammatory cell adhesion molecules VCAM1 and ICAM1 and upregulated transcription factors of endothelial-to-mesenchymal transition (Snail, Slug and Twist1). Furthermore, exposure to CPPs reduced the production of atheroprotective transcription factors KLF2 and KLF4 and led to YAP1 hypophosphorylation, potentially disturbing the mechanisms responsible for the proper endothelial mechanotransduction. Taken together, our results suggest the ability of CPPs to initiate endothelial dysfunction at physiological flow conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dietary phosphate overload induces chronic kidney disease (CKD), and calciprotein particles (CPPs), a form of nanoparticle comprising calcium phosphate and serum proteins, has been proposed to cause renal toxicity. However, the mechanism of CPP cytotoxicity in renal tubular cells is unknown. Here we show that in renal proximal tubular epithelial HK-2 cells, endocytosed CPPs accumulate in late endosomes/lysosomes (LELs) and increase their luminal pH by ~ 1.0 unit. This results in a decrease in lysosomal hydrolase activity and autophagic flux blockage without lysosomal rupture and reactive oxygen species generation. CPP treatment led to vulnerability to H2O2-induced oxidative stress and plasma membrane injury, probably because of autophagic flux blockage and decreased plasma membrane cholesterol, respectively. CPP-induced disruption of lysosomal homeostasis, autophagy flux and plasma membrane integrity might trigger a vicious cycle, leading to progressive nephron loss.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The process of kidney stone formation is complex and still not completely understood. Supersaturation and crystallization are the main drivers for the etiopathogenesis of uric acid, xanthine and cystine stones but this physicochemical concept fails to adequately explain the formation of calcium-based nephrolithiasis, which represents the majority of kidney stones. Contemporary concepts of the pathogenesis of calcium-based nephrolithiasis focus on a nidus-associated stone formation of calcium-based nephrolithiasis on Randall\'s plaques or on plugs of Bellini\'s duct. Randall\'s plaques originate from the interaction of interstitial calcium supersaturation in the renal papilla, vascular and interstitial inflammatory processes and mineral deposits of calcifying nanoparticles on the basal membrane of the thin ascending branch of the loop of Henle; however, plugs of Bellini\'s duct are assumed to be caused by mineral deposits on the wall of the collecting ducts. Aggregation and overgrowth are influenced by the interaction of matrix proteins with calcium supersaturated urine, by an imbalance between promoters and inhibitors of stone formation in the calyceal urine. Current research has elucidated many factors contributing to stone formation by revealing novel insights into the physiology of nephron and papilla, by analyzing vascular, inflammatory and calcifying processes in the renal medulla, by examining the proteome, the microbiome, promoters and inhibitors of stone formation in the urine and by conducting the first genome-wide association studies; however, more future research is mandatory to fill the gap of knowledge and hopefully, to obtain novel prophylactic, therapeutic and metaphylactic tools beyond the current state of knowledge.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Nanobacteria or calcifying nanoparticles are 80-500 nm sized nano-organisms that are physically associated with carbonate apatite mineral formations. They have been indicated in various diseases, including kidney stone formation, Alzheimer\'s disease, and atherosclerosis. Nanoparticles contain calcium and apatite-binding protein fetuin-A, a calcification inhibitor. However, recent evidence indicates that fetuin-A can form nucleation seeds or nidi that grow in size through ion sedimentation to become larger amorphous nanoparticles in the presence of excess calcium and apatite ions. Fetuin-A also functions as an inhibitor of meprin, a metalloproteinase implicated in inflammation and neurodegenerative diseases. During inflammation, meprin functions to regulate chemokine activity of monocyte chemotactic protein 1, which is associated with chronic inflammatory diseases, including atherosclerosis, renal inflammatory diseases, and multiple sclerosis (MS). In addition, calcium phosphate nanocrystals that contain fetuin-A are pro-inflammatory to macrophages and promote vascular smooth muscle cell mineralization, potentiating a vicious cycle of inflammation and calcification. Thus, mineral stress and inflammation appear to be associated with each other. Furthermore, fetuin-A deficient mice exhibited reduced experimental autoimmune encephalomyelitis severity. Thus, fetuin-A plays a direct role in the neuroinflammatory response. Indeed, the level of fetuin-A in cerebrospinal fluid has been defined as a biomarker of disease activity in MS. MS is a chronic, inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) with an unknown etiology. The \"inside-out\" model of MS, supported by recent data, states that the initial axonal degeneration in the CNS occurs before demyelination, which then stimulates an auto-immune attack. It was shown very recently that influx of calcium from the extracellular space through nanoscale ruptures of the axonal plasma membrane predict axon degeneration in neuroinflammation. Calcium is an activator of calpains, proteases that function to break down the cytoskeleton, leading to neurodegeneration. Nanoruptures of the plasma membrane were suggested to occur at the early stages of axon damage, especially at nodes of Ranvier, which are devoid of myelin. Here, I propose that calcifying nanoparticles may have a role in the etiology and/or pathophysiology of MS. The initial event causing neurodegeneration may be due to the nanoparticles that have been suggested to easily cross the blood-brain barrier. Following this, the nanoparticles may create nanoruptures in the axonal membrane and also increase the calcium concentration around and within the neurons by forming nidi for calcification, eventually causing neurodegeneration. Nanoparticles can self-replicate; hence, they may represent an infectious causative agent for the development of MS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Vascular calcification is a major contributor to increased cardiovascular mortality in chronic kidney disease (CKD). Recently, calciprotein particles (CPP) were identified to drive the calcification process. CPP may explain the effects of high phosphate on vascular calcification. Magnesium is a promising novel therapeutic approach to halt vascular calcification, because it inhibits CPP maturation and is associated with reduced cardiovascular mortality in CKD. We aim to examine the current evidence for the role of CPP in the calcification process and to explain how magnesium prevents calcification.
    A recent meta-analysis concluded that reducing high phosphate levels in CKD patients does not associate with lowering cardiovascular mortality. Inhibition of CPP formation prevents phosphate-induced calcification in vitro. Consequently, delaying CPP formation and maturation may be a clinical approach to reduce calcification. Magnesium inhibits CPP maturation and vascular calcification. Clinical pilot studies suggest that magnesium is a promising intervention strategy against calcification in CKD patients.
    CPP induce vascular calcification and are modulated by serum phosphate and magnesium concentrations. Magnesium is a strong inhibitor of CPP maturation and therefore, a promising therapeutic approach to reduce vascular calcification in CKD. Currently, several studies are being performed to determine the clinical outcomes of magnesium supplementation in CKD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The N-TiO2/g-C3N4@diatomite (NTCD) composite has been prepared through a simple impregnation method, using titanium tetrachloride as precursor and urea as nitrogen-carbon source. Then the effects of calcination temperature on structure, surface property and photocatalytic activity of the catalysts were investigated. And XRD, TEM, XPS, FTIR and UV-vis diffuse adsorption spectroscopy were used to characterize the obtained powders. The photocatalytic activity of the NTCD was evaluated through the reduction of aqueous Cr (VI) under visible light irradiation (λ > 400 nm). The results demonstrated that the nano-TiO2 particles ranging from 15 to 30 nm in the crystal of anatase are well deposited on the surface of diatomite in the NTCD-500 which calcined at 500 °C for 2 h. Furthermore, the g-C3N4 with the lay thickness of 0.92 nm was attached to the surface of nano-TiO2. The N-doped TiO2 and g-C3N4 doped catalysts could co-enhance response in the visible light region and reduce band gap of NTCD-500 (Eg = 3.07 eV). And the NTCD-500 sample exhibited nearly 100% removal rate within 5 h for photocatalytic reduction of Cr (VI) which was higher activity than P25, crude TiO2@diatomite and g-C3N4@diatomite.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号