biomimetics

仿生学
  • 文章类型: Journal Article
    在具有人工智能的机器人技术中模拟触觉感觉神经以实现高级感觉功能非常有趣。然而,这样的设备仍然笨重,缺乏可靠的能力来使具有本体感受反馈的突触设备功能化。这里,我们报告了一种通过整合压力激活的有机电化学突触晶体管和人工机械感受器而获得的具有低工作偏置(-0.6V)的人工有机传入神经。神经机器人的树突状整合功能是为了感知物体的定向运动,通过利用分布式和并行网络进一步降低控制复杂性。用人工传入神经组装的智能机器人,结合闭环反馈程序,可以在发生物体打滑时快速实施打滑识别和预防措施。通过深度学习模型处理尖峰编码信号后,触觉模式的时空特征得到很好的区分,具有较高的识别精度。这项工作代表了模仿突触行为的突破,这对于下一代智能神经机器人和低功耗仿生电子产品至关重要。
    The emulation of tactile sensory nerves to achieve advanced sensory functions in robotics with artificial intelligence is of great interest. However, such devices remain bulky and lack reliable competence to functionalize further synaptic devices with proprioceptive feedback. Here, we report an artificial organic afferent nerve with low operating bias (-0.6 V) achieved by integrating a pressure-activated organic electrochemical synaptic transistor and artificial mechanoreceptors. The dendritic integration function for neurorobotics is achieved to perceive directional movement of object, further reducing the control complexity by exploiting the distributed and parallel networks. An intelligent robot assembled with artificial afferent nerve, coupled with a closed-loop feedback program is demonstrated to rapidly implement slip recognition and prevention actions upon occurrence of object slippage. The spatiotemporal features of tactile patterns are well differentiated with a high recognition accuracy after processing spike-encoded signals with deep learning model. This work represents a breakthrough in mimicking synaptic behaviors, which is essential for next-generation intelligent neurorobotics and low-power biomimetic electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下背痛(LBP)是与椎间盘退变(IDD)密切相关的常见病,造成重大的社会经济负担。变性椎间盘的炎症激活涉及促炎细胞因子,失调的调节细胞因子,神经生长因子(NGF)水平升高,导致椎间盘进一步破坏和疼痛敏感。巨噬细胞极化与自噬密切相关。基于这些病理特征,开发了一种结构化的仿生纳米颗粒,该纳米颗粒涂有TrkA过表达的巨噬细胞膜(TMNP@SR),并带有雷帕霉素负载的介孔二氧化硅核。TMNP@SR像海绵一样吸附炎性细胞因子和NGF,并通过外部工程化细胞膜的同源靶向作用将自噬调节剂雷帕霉素(RAPA)递送到巨噬细胞中。通过调节自噬激活,TMNP@SR促进巨噬细胞的M1-M2转换,以避免变性椎间盘内炎症的持续激活,防止髓核细胞凋亡。此外,TMNP@SR缓解了机械和热痛觉过敏,降钙素基因相关肽(CGRP)和P物质(SP)在背根神经节中的表达降低,并下调大鼠IDD模型脊髓GFAP和c-FOS信号传导。总之,TMNP@SR自发抑制椎间盘炎症的加重,缓解椎间盘退变,减少感觉神经的进入,为椎间盘退变引起的LBP提供了一种有希望的治疗策略。
    Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前的可喷雾水凝胶面膜缺乏逐步保护,洁面,和广泛伤口的营养,导致瘢痕愈合延迟。这里,我们开发了一种可喷雾的仿生双伤口面膜(BDM),具有快速的自噬和分层编程功能,可用于无疤痕的伤口愈合。BDM包含疏水性聚(丙交酯-共-丙二醇-共-丙交酯)二甲基丙烯酸酯(PLD)作为顶层,亲水性明胶甲基丙烯酸酯(GelMA)水凝胶作为底层,能够快速自动进入双层结构。光交联后,BDM快速固化,界面结合牢固,坚固的组织粘连,和出色的联合适应能力。实施后,底部GelMA层可以立即释放钙离子用于快速止血,而顶部的PLD层可以保持湿润,透气,无菌环境。这些性状协同抑制炎性肿瘤坏死因子-α途径,同时协调环磷酸鸟苷/蛋白激酶G-Wnt/钙离子信号通路以滋养血管生成。总的来说,我们的BDM具有双层结构的自我调节结构,可以对愈合过程进行分层编程,并具有无疤痕伤口愈合的转化潜力。
    Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干旱可能会产生气泡,阻碍植物液压系统内的树液运输,从而对全球森林生存构成重大威胁。然而,在静脉尺度上空气进入和传播的详细机制仍然难以捉摸。建立在我们开发的仿生叶片模型上,我们建议直接比较Adiantum(maidenhair蕨类植物)叶片中的空气栓塞传播,在Brodribb等人中提出。(BrodribbTJ,BienaiméD,MarmotantP.2016揭示了叶片网络在压力下的灾难性故障。Proc.NatlAcad.Sci.美国113,4865-4869(doi:10.1073/pnas.1522569113))和我们的仿生叶子。特别是,我们证明,通过在我们的仿生静脉部分引入微收缩,可以恢复在铁线莲叶中观察到的栓塞传播的生涩动力学,模拟真实叶子中边缘凹坑膜中存在的纳米孔。我们表明,可以通过简单的模型将收缩引起的压力变化和顺应性微通道体积的变化耦合起来,来恢复传播中的间歇性。我们的研究标志着仿生叶片的设计迈出了一步,该仿生叶片再现了真实叶片中栓塞传播的特定方面,使用最小的一组可控和易于调谐的组件。这种仿生叶子构成了有希望的物理类似物,并为将来的增强奠定了基础,以充分体现栓塞真实叶子的独特物理特征。
    Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants\' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米和微加工技术的最新进展导致了能够引导神经元发芽的高度仿生图案化基底的开发,路由,伸长率,和分支。这样的基底,概括在天然大脑中发现的形状和几何形状,可能为能够指导神经元-材料界面形态发生的细胞指导性范例的发展铺平道路。在这种情况下,高分辨率电子显微镜方法,由于它们能够以纳米级分辨率辨别神经形态发生的细节,可能在解开与仿生结构底物接口的神经元的精细超微结构中起关键作用。
    Recent advancements in nano- and microfabrication techniques have led to the development of highly biomimetic patterned substrates able to guide neuronal sprouting, routing, elongation, and branching. Such substrates, recapitulating shapes and geometries found in the native brain, may pave the way toward the development of cell instructive paradigms able to guide morphogenesis at the neuron-material interface. In this scenario, high-resolution electron microscopy approaches, owing to their ability of discerning the details of neural morphogenesis at a nanoscale resolution, may play a crucial role in unravelling the fine ultrastructure of neurons interfacing with biomimetic structured substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺血性脑卒中是一种涉及多个复杂生理过程的严重神经系统疾病,包括血管阻塞,脑组织缺血,能量代谢受损,细胞死亡,离子泵功能受损,和炎症反应。近年来,细胞膜功能化仿生纳米粒子作为一种新的治疗方法引起了人们的极大兴趣.这篇综述全面探讨了使用这些纳米颗粒治疗急性缺血性中风的机制和重要性,特别强调了它们通过细胞膜积极靶向治疗的潜力。我们概述了缺血性卒中的病理生理学,并介绍了仿生纳米粒子的研究进展。强调它们在药物输送和精准靶向治疗方面的潜力。本文重点研究了包裹在仿生细胞膜中的生物纳米颗粒,以靶向缺血性中风治疗。它强调了不同类型的细胞膜功能化的双离子纳米粒子,如红细胞的作用机制和研究进展,中性粒细胞,血小板,外泌体,巨噬细胞,神经干细胞治疗缺血性卒中,同时强调其改善脑组织缺血状态和减轻神经损伤和功能障碍的潜力。通过深入探索细胞膜功能化仿生纳米粒子在改善脑组织缺血状态同时减少神经损伤和功能障碍的潜在益处,本研究还提供了对神经干细胞的潜能以及细胞膜功能化仿生纳米粒子改善神经损伤和功能障碍的综合研究。然而,不可否认,在生物相容性方面仍然存在一些挑战和局限性,安全,和临床翻译的实际应用。
    Ischemic stroke is a serious neurological disease involving multiple complex physiological processes, including vascular obstruction, brain tissue ischemia, impaired energy metabolism, cell death, impaired ion pump function, and inflammatory response. In recent years, there has been significant interest in cell membrane-functionalized biomimetic nanoparticles as a novel therapeutic approach. This review comprehensively explores the mechanisms and importance of using these nanoparticles to treat acute ischemic stroke with a special emphasis on their potential for actively targeting therapies through cell membranes. We provide an overview of the pathophysiology of ischemic stroke and present advances in the study of biomimetic nanoparticles, emphasizing their potential for drug delivery and precision-targeted therapy. This paper focuses on bio-nanoparticles encapsulated in bionic cell membranes to target ischemic stroke treatment. It highlights the mechanism of action and research progress regarding different types of cell membrane-functionalized bi-onic nanoparticles such as erythrocytes, neutrophils, platelets, exosomes, macrophages, and neural stem cells in treating ischemic stroke while emphasizing their potential to improve brain tissue\'s ischemic state and attenuate neurological damage and dysfunction. Through an in-depth exploration of the potential benefits provided by cell membrane-functionalized biomimetic nanoparticles to improve brain tissue\'s ischemic state while reducing neurological injury and dysfunction, this study also provides comprehensive research on neural stem cells\' potential along with that of cell membrane-functionalized biomimetic nanoparticles to ameliorate neurological injury and dysfunction. However, it is undeniable that there are still some challenges and limitations in terms of biocompatibility, safety, and practical applications for clinical translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    仿生神经形态传感系统,受到生物神经网络结构和功能的启发,代表了传感技术和人工智能领域的重大进步。本文重点介绍了电解质门控晶体管(EGT)作为这些神经形态系统的核心组件(突触和神经)的开发和应用。EGT提供独特的优势,包括低工作电压,高跨导,和生物相容性,使它们成为与传感器集成的理想选择,与生物组织接口,模仿神经过程。EGT在触觉传感器等神经形态感觉应用中的重大进展,视觉神经形态系统,化学神经形态系统,和多模神经形态系统进行了仔细讨论。此外,探索了该领域的挑战和未来方向,强调了基于EGT的仿生系统彻底改变神经形态假体的潜力,机器人,和人机界面。通过对最新研究的综合分析,这篇综述旨在通过EGT传感和集成技术,详细了解仿生神经形态感觉系统的现状和未来前景。
    Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知直接机械耦合对于建立纤毛之间的同步至关重要。然而,连接的实际作用仍然难以捉摸,部分原因是在活样本中进行的受控实验具有挑战性。这里,我们采用人工睫状系统来解决这个问题。两个纤毛是由自推进机器人的链条形成的,并固定在一个共享的底座上,因此它们是纯机械耦合的。该系统模仿生物纤毛搏动,但允许对搏动动力学进行精细控制。随着机械联轴器的不同方案,人工纤毛表现出丰富的运动模式。特别是,它们的同步跳动显示出两种不同的模式-类似于在C.reinhardtii中观察到的模式,用于研究同步性的双纤毛模型生物。仔细检查表明,该系统朝着最耗散的模式发展。在模拟和实验中使用此指南,我们能够通过改变各自的耗散模式来引导系统进入所需的状态。我们的结果对理解纤毛的同步性具有重要意义。
    Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive-partly because controlled experiments in living samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they are purely mechanically coupled. The system mimics biological ciliary beating but allows fine control over the beating dynamics. With different schemes of mechanical coupling, artificial cilia exhibit rich motility patterns. Particularly, their synchronous beating display two distinct modes-analogous to those observed in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests that the system evolves towards the most dissipative mode. Using this guideline in both simulations and experiments, we are able to direct the system into a desired state by altering the modes\' respective dissipation. Our results have significant implications in understanding the synchronization of cilia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原理:孤独症谱系障碍(ASD)代表了一种复杂的神经发育状况,缺乏特定的药物干预措施。鉴于ASD的多面性病因,目前尚无有效的ASD治疗方法。雷帕霉素(RAPA)可通过抑制mTOR通路激活自噬,在治疗中枢神经系统疾病方面具有良好的疗效。其穿过血脑屏障(BBB)的能力有限,阻碍了其临床疗效,导致严重的副作用。方法:为了应对这一挑战,我们设计了一种利用SS31肽修饰的红细胞膜(CM)囊泡的药物递送系统,以增强RAPA的脑渗透性,用于治疗自闭症。结果:制备的SCM@RAPA纳米颗粒,平均直径为110nm,在以氧化应激为特征的病理环境中表现出RAPA的快速释放。体外实验结果表明SCM@RAPA能有效激活细胞自噬,降低细胞内ROS水平,改善线粒体功能,从而改善神经元损伤。SS31肽修饰显著增强SCM@RAPA的BBB穿透性和快速脑积累。值得注意的是,SCM@RAPA纳米粒子证明了改善社会赤字的潜力,改善认知功能,和逆转丙戊酸(VPA)诱导的ASD模型中的神经元损伤。结论:SCM@RAPA在治疗ASD中的治疗潜力标志着自闭症药物治疗的范式转变,有望在各种神经系统疾病中进行临床干预。
    Rationale: Autism spectrum disorder (ASD) represents a complex neurodevelopmental condition lacking specific pharmacological interventions. Given the multifaced etiology of ASD, there exist no effective treatment for ASD. Rapamycin (RAPA) can activate autophagy by inhibiting the mTOR pathway and has exhibited promising effects in treating central nervous system disorders; however, its limited ability to cross the blood-brain barrier (BBB) has hindered its clinical efficacy, leading to substantial side effects. Methods: To address this challenge, we designed a drug delivery system utilizing red blood cell membrane (CM) vesicles modified with SS31 peptides to enhance the brain penetration of RAPA for the treatment of autism. Results: The fabricated SCM@RAPA nanoparticles, with an average diameter of 110 nm, exhibit rapid release of RAPA in a pathological environment characterized by oxidative stress. In vitro results demonstrate that SCM@RAPA effectively activate cellular autophagy, reduce intracellular ROS levels, improve mitochondrial function, thereby ameliorating neuronal damage. SS31 peptide modification significantly enhances the BBB penetration and rapid brain accumulation of SCM@RAPA. Notably, SCM@RAPA nanoparticles demonstrate the potential to ameliorate social deficits, improve cognitive function, and reverse neuronal impairments in valproic acid (VPA)-induced ASD models. Conclusions: The therapeutic potential of SCM@RAPA in managing ASD signifies a paradigm shift in autism drug treatment, holding promise for clinical interventions in diverse neurological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人造神经形态装置可以模拟树枝状整合,轴突平行传输,以及促进高效信息处理的卓越能源效率,为可穿戴电子产品提供了巨大的潜力。然而,将这些电路集成到纺织品中,以实现仿生信息感知,processing,和控制运动反馈仍然是一个巨大的挑战。这里,我们设计了一种准固态离子突触纤维(ISF),包括光响应TiO2,离子存储Co-MoS2和离子传输层。由此产生的ISF实现了固有的短期突触可塑性,毫微微焦耳范围的能量消耗,以及转换化学/光学信号的能力。多个ISF交织成合成神经织物,允许同时传播不同的光信号以传输并行信息。重要的是,具有多个输入电极的IFS表现出时空信息集成。作为概念的证明,构建了一种基于纺织品的多路复用神经形态感觉运动系统,以连接突触纤维与人造纤维肌肉,实现创业型传感信息集成,并行传输,和后神经元信息输出来控制纤维肌肉的协调运动。拟议的光纤系统在可穿戴电子产品中拥有巨大的前景,软机器人,和生物医学工程。
    Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号