biointerfaces

生物界面
  • 文章类型: Journal Article
    仿生电刺激(Bio-ES)旨在通过模仿身体的自然神经特征来实现个性化治疗和本体感受适应,虽然当前的Bio-ES设备依赖于复杂的传感和计算模拟系统,因此通常受到模拟电信号的低保真度的限制,以及由于软组织和刚性电极之间的机械不匹配而导致的界面信息交互失败。这里,该研究提出了一种灵活且超薄的可自我维持的生物电子贴片(Bio-patch),能自我粘附于器官的病变区域,并在原位产生同步迷走神经包膜的仿生电信号,从而实现Bio-ES。它允许强度的自适应调整,频率,基于迷走神经控制器官的实时反馈,充分满足个性化的组织再生需求。有了这个基础,Bio-patch通过调节巨噬细胞的极化时间,有效干预自然愈合过程中的过度纤维化和微血管淤滞,促进组织工程结构的重建,加速受损肝脏和肾脏的修复.这项工作开发了一种实用的方法,仅使用多功能生物贴片即可实现对软器官生长发育的仿生电子调制,这为精确的生物电子医学建立了新的范式。
    Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs. With this foundation, the Bio-patch can effectively intervene with excessive fibrosis and microvascular stasis during the natural healing process by regulating the polarization time of macrophages, promoting the reconstruction of the tissue-engineered structure, and accelerating the repair of damaged liver and kidney. This work develops a practical approach to realize biomimetic electronic modulation of the growth and development of soft organs only using a multifunctional Bio-patch, which establishes a new paradigm for precise bioelectronic medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米级细胞-细胞外基质(ECM)配体的物理性质深刻影响生物过程,如附着力,运动性,和差异化。虽然细胞对静态配体的机械反应已得到充分研究,具有“适应性”特性的动态配体呈递对细胞机械转导的影响尚不清楚。利用可控的可扩散配体界面,我们证明,具有快速配体迁移的表面上的细胞可以通过激活整合素α5β1来募集配体,从而在早期粘附阶段导致更快的局灶性粘附生长和扩散。通过利用紫外光敏感的锚分子来触发配体的“动态到静态”转化,我们依次激活α5β1和αvβ3整合素,显著促进间充质干细胞的成骨分化。这项研究说明了如何操纵分子动力学可以直接影响干细胞的命运,这表明“顺序”控制的移动表面作为工程智能生物材料涂层的适应性平台的潜力。
    The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with \"adaptive\" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5β1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a \"dynamic to static\" transformation of ligands, we sequentially activated α5β1 and αvβ3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of \"sequentially\" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Soft materials are crucial for epidermal interfaces in biomedical devices due to their capability to conform to the body compared to rigid inorganic materials. Gels, liquids, and polymers have been extensively explored, but they lack sufficient electrical and thermal conductivity required for many application settings. Gallium-based alloys are molten metals at room temperature with exceptional electrical and thermal conductivity. These liquid metals and their composites can be directly applied onto the skin as interface materials. In this Spotlight on Applications, we focus on the rapidly evolving field of liquid metal-enabled epidermal interfaces featuring unique physical properties beyond traditional gels and polymers. We delve into the role of liquid metal in electrical and thermal biointerfaces in various epidermal applications. Current challenges and future directions in this active area are also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文对纳米结构表面的抗病毒性能进行了全面的实验和理论研究,并解释了潜在的杀病毒机制。我们使用反应离子蚀刻来制造硅(Si)表面,其特征是尖端直径约为2nm,高度为290nm的尖锐纳米尖峰阵列。Nanospike表面在6小时后显示人3型副流感病毒(hPIV-3)的感染性降低了1.5log,大大提高的效率,与光滑Si相比。病毒-纳米尖峰相互作用的理论模型确定了纳米结构基质的杀病毒作用与尖锐纳米特征有效穿透病毒包膜的能力有关。导致病毒感染性的丧失。我们的研究强调了纳米结构表面在对抗病毒和细菌传播方面的潜在应用的重要性。值得注意的是,我们的研究为抗病毒表面的设计和优化提供了有价值的见解,特别强调了尖锐的纳米特征在最大限度地提高其有效性中所起的关键作用。
    This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于高选择性和非侵入性,光疗在癌症治疗中引起了越来越多的关注。光敏剂在肿瘤组织中的靶向递送和保留对于安全有效的光疗具有重要意义。在这里,我们报道了一种多功能的纳米材料光热剂,即氨基修饰氧化石墨烯(AGO)用于抗口腔癌光热治疗(PTT)。与具有负电荷和弱光热效应的母体氧化石墨烯(GO)相比,AGO具有正电荷(〜50mV)和显着增强的光热效应。正电荷允许AGO有效地与肿瘤细胞相互作用并在肿瘤内注射后保留在肿瘤组织中。增强的光热效应允许AGO实现可调谐和有效的PTT。体外结果表明,在近红外(NIR)照射下(温度升高至58.4℃),AGO(15μg/mL)可将HSC-3细胞(口腔鳞状细胞癌细胞系)的活力降低至5%。体内抗肿瘤研究表明,在没有NIR的情况下,瘤内递送AGO(200μg/小鼠)对肿瘤生长(初始肿瘤大小的454%)没有抑制作用。单剂量的近红外辐射,然而,在4只小鼠中,AGO将肿瘤大小显着减小至初始大小的25%,甚至在4只小鼠中的3只中诱导完全的肿瘤消融。此外,PTT后注射的AGO与结痂一起脱落。我们的发现表明,AGO是一种潜在的纳米光热剂,方便高效的抗癌PTT。
    Due to the high selectivity and non-invasive property, phototherapy has attracted increasing attention in the treatment of cancer. Targeted delivery and retention of photoactive agents in tumor tissue is of great significance and importance for safe and efficient phototherapy. Herein, we report a multifunctional nanomaterial photothermal agent, namely amino-modified graphene oxide (AGO) for anti-oral cancer photothermal therapy (PTT). Compared to the parental graphene oxide (GO) which has a negative charge and weak photothermal effect, AGO possesses a positive charge (∼+50 mV) and the significantly enhanced photothermal effect. Positive charge allows AGO to efficiently interact with tumor cells and retain in tumor tissue after intratumor injection. The enhanced photothermal effect allows AGO to achieve the tunable and efficient PTT. In vitro results show that AGO (15 μg/mL) reduces the viability of HSC-3 cells (oral squamous cell carcinoma cell line) to 5% under near infrared (NIR) irradiation (temperature increased to 58.4 °C). In vivo antitumor study shows that intratumor delivery of AGO (200 μg/mouse) has no inhibition effects on tumor growth (454% of initial tumor size) without NIR. With a single dose of NIR irradiation, however, AGO significantly reduces the tumor size to 25% of initial size in 1 of 4 mice, and even induces the complete tumor ablation in 3 of 4 mice. Furthermore, the injected AGO falls off along with the scab after PTT. Our findings indicate that AGO is a potential nano-photothermal agent for tunable, convenient and efficient anticancer PTT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从复杂体液中吸附多蛋白是医学中一个非常重要和复杂的现象。在这项工作中,在不同的血清浓度和pH值下,研究了稀释的人血清在金和氧化的铁表面上的多蛋白吸附。通过原子力显微镜(AFM)和偏振调制红外反射吸收光谱(PM-IRRAS)定量了吸附引起的表面形貌变化和吸附蛋白质的总量,分别。对于两个表面,与pH7和pH8相比,在pH6观察到更强的蛋白质吸附。PM-IRRAS还提供了对吸附的多蛋白膜组成的pH依赖性变化的一些定性见解。酰胺II/酰胺I带面积比的变化,特别是侧链IR吸收的变化表明,在pH6时吸附的增加伴随着蛋白质膜组成的变化。大概,这主要是由人血清白蛋白的吸附驱动的,在pH为6时更容易吸附,从而在所得多蛋白膜中取代具有较低表面亲和力的其他蛋白。
    Multiprotein adsorption from complex body fluids represents a highly important and complicated phenomenon in medicine. In this work, multiprotein adsorption from diluted human serum at gold and oxidized iron surfaces is investigated at different serum concentrations and pH values. Adsorption-induced changes in surface topography and the total amount of adsorbed proteins are quantified by atomic force microscopy (AFM) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS), respectively. For both surfaces, stronger protein adsorption is observed at pH 6 compared to pH 7 and pH 8. PM-IRRAS furthermore provides some qualitative insights into the pH-dependent alterations in the composition of the adsorbed multiprotein films. Changes in the amide II/amide I band area ratio and in particular side-chain IR absorption suggest that the increased adsorption at pH 6 is accompanied by a change in protein film composition. Presumably, this is mostly driven by the adsorption of human serum albumin, which at pH 6 adsorbs more readily and thereby replaces other proteins with lower surface affinities in the resulting multiprotein film.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米级表面形貌对蛋白质吸附的影响对于医学和技术中的许多应用非常重要。在这里,铁蛋白在平面和纳米面的吸附,使用原子力显微镜和X射线光电子能谱研究了单晶Al2O3表面。纳米刻面表面是通过在1000°C以上的温度下对Al2O3晶片进行热退火而产生的,这导致形成刻面锯齿状表面形貌,周期性约为160nm,振幅约为15nm。与浓度为10mg/mL的平坦表面相比,在这些纳米刻面表面上的铁蛋白吸附显着受到抑制。这归因于新形成的小平面的吸附亲和力较低。因此,吸附主要限于图案凹槽,蛋白质可以最大化它们与表面的接触面积。然而,这种效果取决于蛋白质浓度,在30mg/mL时观察到相反的趋势。此外,在不同退火温度下制造的形貌相似的纳米面图案上观察到不同的铁蛋白吸附行为,并归因于不同的台阶和扭结密度。这些结果表明,虽然蛋白质在固体表面的吸附可以显著受到纳米面模式的影响,以这种方式微调蛋白质吸附需要精确控制刻面特性。
    The influence of nanoscale surface topography on protein adsorption is highly important for numerous applications in medicine and technology. Herein, ferritin adsorption at flat and nanofaceted, single-crystalline Al2O3 surfaces is investigated using atomic force microscopy and X-ray photoelectron spectroscopy. The nanofaceted surfaces are generated by the thermal annealing of Al2O3 wafers at temperatures above 1000 °C, which leads to the formation of faceted saw-tooth-like surface topographies with periodicities of about 160 nm and amplitudes of about 15 nm. Ferritin adsorption at these nanofaceted surfaces is notably suppressed compared to the flat surface at a concentration of 10 mg/mL, which is attributed to lower adsorption affinities of the newly formed facets. Consequently, adsorption is restricted mostly to the pattern grooves, where the proteins can maximize their contact area with the surface. However, this effect depends on the protein concentration, with an inverse trend being observed at 30 mg/mL. Furthermore, different ferritin adsorption behavior is observed at topographically similar nanofacet patterns fabricated at different annealing temperatures and attributed to different step and kink densities. These results demonstrate that while protein adsorption at solid surfaces can be notably affected by nanofacet patterns, fine-tuning protein adsorption in this way requires the precise control of facet properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干细胞粘附是通过整联蛋白受体与细胞外基质(ECM)中存在的粘附基序的结合来介导的。粘附配体的空间组织在干细胞整合素介导的粘附中起重要作用。在这项研究中,我们使用精氨酸-甘氨酸-天冬氨酸(RGD)-功能化的介孔二氧化硅纳米颗粒(MSN-RGD)开发了一系列生物界面,以研究RGD粘附配体整体密度(表面上的配体覆盖率)的影响,间距,和RGD聚类水平对干细胞粘附和分化的影响。为了准备生物界面,通过防污聚(乙二醇)(PEG)接头用RGD肽化学官能化MSN。可以控制RGD表面官能化比率以产生具有高和低RGD配体聚集水平的MSN。可以通过将不同比例的MSN-RGD和非RGD官能化MSN混合在一起来产生具有不同RGD整体密度的MSN膜。进行计算模拟研究以分析所得表面上的纳米颗粒分布和RGD间距以确定实验条件。使用高度聚集的RGD-MSN基薄膜,当RGD整体密度从1.06nmolcm-2增加到5.32nmolcm-2时,观察到细胞粘附和扩散增强。较高的RGD配体聚集水平导致较大的细胞扩散和粘着斑的形成增加。此外,较高的RGD配体聚集水平促进了hMSCs中碱性磷酸酶的表达。总的来说,这些发现表明RGD全局密度和聚类水平都是调节干细胞行为的关键变量。这项研究提供了有关配体-整合素相互作用的重要信息,可用于生物材料设计,以实现粘附功能肽的最佳性能。
    Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于它们独特的电化学和机械性能,导电聚合物水凝胶已被广泛用作软,湿,和常规金属电极的导电涂层,提供机械兼容的接口和减轻异物响应。然而,这些水凝胶涂层的长期生存能力受到关于疲劳裂纹扩展和/或由长期电接口连接期间的重复体积膨胀/收缩引起的分层的担忧的阻碍。这里,我们报告了一种通用但可靠的方法,通过在水凝胶和金属基材之间的界面处设计纳米晶域,在常规金属生物电极上实现抗疲劳的导电聚合物水凝胶涂层。我们证明了这种健壮的功效,生物相容性和抗疲劳导电水凝胶涂层在心脏起搏,展示了其有效降低起搏阈值电压和增强电刺激长期可靠性的能力。我们的发现强调了我们的方法作为下一代无缝生物电子接口的有前途的设计和制造策略的潜力。本文受版权保护。保留所有权利。
    Because of their distinct electrochemical and mechanical properties, conducting polymer hydrogels have been widely exploited as soft, wet, and conducting coatings for conventional metallic electrodes, providing mechanically compliant interfaces and mitigating foreign body responses. However, the long-term viability of these hydrogel coatings is hindered by concerns regarding fatigue crack propagation and/or delamination caused by repetitive volumetric expansion/shrinkage during long-term electrical interfacing. This study reports a general yet reliable approach to achieving a fatigue-resistant conducting polymer hydrogel coating on conventional metallic bioelectrodes by engineering nanocrystalline domains at the interface between the hydrogel and metallic substrates. It demonstrates the efficacy of this robust, biocompatible, and fatigue-resistant conducting hydrogel coating in cardiac pacing, showcasing its ability to effectively reduce the pacing threshold voltage and enhance the long-term reliability of electric stimulation. This study findings highlight the potential of its approach as a promising design and fabrication strategy for the next generation of seamless bioelectronic interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脂多糖(LPS)是主要的细菌毒素,对全球范围内与极高的发病率和死亡率相关的脓毒症的发病机理和进展至关重要。然而,由于结构的复杂性及其在细菌物种之间/内部的差异,从循环血液中特异性清除LPS是非常具有挑战性的。在这里,我们提出了一种基于噬菌体展示筛选和血液相容性肽瓶刷聚合物设计的稳健策略,用于特异性清除循环血液中的靶向LPS.以从大肠杆菌中提取的LPS为例,我们发现了一种新的肽(HWKAVNWLKPWT)具有高亲和力(KD<1.0nº),特异性,通过迭代亲和选择与内毒素解毒筛选,对靶向LPS的中和活性(95.9±0.1%)。带有短肽的血液相容性瓶刷聚合物[聚(PEGMEA-co-PEP-1)]表现出高LPS选择性,可通过体外血液灌流将脓毒症兔的循环LPS水平从2.63±0.01降低至0.78±0.05EU/mL(LPS清除率>70%),显著逆转LPS诱导的白细胞减少和多器官损害。这项工作为开发完全覆盖LPS家族的高度选择性血液吸附剂库提供了通用范例。有望开创脓毒症治疗精准医学的新时代。本文受版权保护。保留所有权利。
    Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号