autosomal recessive osteopetrosis

  • 文章类型: Journal Article
    我们介绍了一名新生儿,患有短暂性全身性骨硬化和阴性遗传检查。这种情况的病因尚不清楚。考虑到重叠的放射学征象与严重的骨硬化形式,熟悉这种情况对于正确的诊断和管理至关重要。
    We present a newborn with transient generalized osteosclerosis and negative genetic workup. The etiology of this condition is unknown. Given overlapping radiologic signs with severe forms of osteopetrosis, familiarity with this condition is crucial for correct diagnosis and management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    背景:常染色体隐性遗传性骨硬化病(ARO)是一种罕见的骨代谢遗传病,主要影响破骨细胞的重塑功能。造血干细胞移植(HSCT)是ARO的一线治疗方法。评估治疗反应的传统工具,例如测量供体嵌合体,不要提供有关骨骼重塑的信息。使用骨转换标记(BTM)可能是理想的。这里,我们报告了一例儿科ARO患者成功接受HSCT的病例.方法:为了评估整个移植过程中供体来源的破骨细胞活性和骨骼重塑,使用骨吸收标志物β-CTX(β-C末端端肽)。结果:移植后β-CTX的低基线水平显着增加,甚至在3个月后仍保持在升高的范围内。供体来源的破骨细胞活性在5个月后达到其大约第50百分位数范围的新基线水平,并且在15个月的随访时间内被证明是稳定的。HSCT后基线破骨细胞活性的明显增加与疾病表型的影像学改善和骨代谢参数的校正相一致。尽管成功的供体来源的破骨细胞恢复,颅骨融合发展,必须进行重建手术。结论:使用β-CTX可能有助于评估整个移植过程中的破骨细胞活性。进一步的研究可能有助于使用可用的破骨细胞和成骨细胞特异性标志物建立ARO患者的扩展BTM谱。
    Background: Autosomal recessive osteopetrosis (ARO) is a rare genetic disorder of bone metabolism, primarily affecting the remodelling function of osteoclasts. Haematopoietic stem cell transplantation (HSCT) is the first-line treatment for ARO. Traditional tools for the assessment of therapeutic response, such as measuring donor chimerism, do not provide information on bone remodelling. The use of bone turnover markers (BTMs) might be ideal. Here, we report a case of a paediatric ARO patient undergoing successful HSCT. Methods: For the evaluation of donor-derived osteoclast activity and skeletal remodelling throughout the transplantation, the bone resorption marker β-CTX (β-C-terminal telopeptide) was used. Results: The low baseline level of β-CTX markedly increased after transplantation and remained in the elevated range even after 3 months. Donor-derived osteoclast activity reached its new baseline level around the 50th percentile range after 5 months and proved to be stable during the 15-month follow-up time. The apparent increase of the baseline osteoclast activity after HSCT was in consonance with the radiographic improvement of the disease phenotype and the correction of bone metabolic parameters. Despite the successful donor-derived osteoclast recovery, craniosynostosis developed, and reconstructive surgery had to be performed. Conclusions: The use of β-CTX may be of aid in assessing osteoclast activity throughout the transplantation. Further studies could help to establish the extended BTM profile of ARO patients using the available osteoclast- and osteoblast-specific markers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Osteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diagnosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Osteopetrosis is characterized by increased bone density and bone marrow cavity stenosis due to a decrease in the number of osteoclasts or the dysfunction of their differentiation and absorption properties usually caused by biallelic variants of the TCIRG1 and CLCN7 genes.
    METHODS: In this study, we describe five Chinese children who presented with anemia, thrombocytopenia, hepatosplenomegaly, repeated infections, and increased bone density. Whole-exome sequencing identified five compound heterozygous variants of the CLCN7 and TCIRG1 genes in these patients.
    RESULTS: Patient 1 had a novel variant c.1555C>T (p.L519F) and a previously reported pathogenic variant c.2299C>T (p.R767W) in CLCN7. Patient 2 harbored a novel missense variant (c.1025T>C; p.L342P) and a novel splicing variant (c.286-9G>A) in CLCN7. Patients 3A and 3B from one family displayed the same compound heterozygous TCIRG1 variant, including a novel frameshift variant (c.1370del; p.T457Tfs*71) and a novel splicing variant (c.1554+2T>C). In Patient 4, two novel variants were identified in the TCIRG1 gene: c.676G>T; p.E226* and c.1191del; p.P398Sfs*5. Patient 5 harbored two known pathogenic variants, c.909C>A (p.Y303*) and c.2008C>T (p.R670*), in TCIRG1. Analysis of the products obtained from the reverse transcription-polymerase chain reaction revealed that the c.286-9G>A variant in CLCN7 of patient 2 leads to intron 3 retention, resulting in the formation of a premature termination codon (p.E95Vfs*8). These five patients were eventually diagnosed with autosomal recessive osteopetrosis, and the three children with TCIRG1 variants received hematopoietic stem cell transplantation.
    CONCLUSIONS: Our results expand the spectrum of variation of genes related to osteopetrosis and deepen the understanding of the relationship between the genotype and clinical characteristics of osteopetrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    婴儿恶性石骨症(IMO)是一种罕见的常染色体隐性遗传疾病,其特征是骨吸收功能障碍引起的骨髓骨密度增加。临床上,IMO可以通过体检来诊断,骨密度测试和全基因组测序。
    我们介绍了一个4个月大的男婴颅骨发育异常的案例,低钙血症和颅骨缝线过早闭合。由于他的影像学检查显示骨密度过高,这是国际海事组织的特征模式,我们推测他可能是国际海事组织的病人.为了确认这个诊断,对婴儿及其父母进行了高精度全外显子组测序.对高精度全外显子组测序结果的分析导致鉴定出两个新的杂合突变c.504-1G>C(剪接位点突变)和c.1371delC(p。G458Afs*70,一种移码突变)来自其父母的TCIRG1基因。因此,我们认为这两种突变与IMO的发生密切相关。
    到目前为止,TCIRG1基因中的这两个新突变在中国人群的参考基因数据库中尚未报道。在中国以外的基因组聚集数据库(gnomAD)中同样没有报道这些变体。我们的案例表明,使用全外显子组测序来检测这两种突变将提高IMO的识别和早期诊断,更具体地说,鉴定具有TCIRG1基因突变的纯合个体。我们认为TCIRG1基因中的这些突变可能是未来IMO的新治疗靶标。
    Infantile malignant osteopetrosis (IMO) is a rare autosomal recessive disease characterized by a higher bone density in bone marrow caused by the dysfunction of bone resorption. Clinically, IMO can be diagnosed with medical examination, bone mineral density test and whole genome sequencing.
    We present the case of a 4-month-old male infant with abnormal skull development, hypocalcemia and premature closure of the cranial sutures. Due to the hyper bone density showed by his radiographic examination, which are characteristic patterns of IMO, we speculated that he might be an IMO patient. In order to confirm this diagnosis, a high-precision whole exome sequencing of the infant and his parents was performed. The analysis of high-precision whole exome sequencing results lead to the identification of two novel heterozygous mutations c.504-1G > C (a splicing site mutation) and c.1371delC (p.G458Afs*70, a frameshift mutation) in gene TCIRG1 derived from his parents. Therefore, we propose that there is a close association between these two mutations and the onset of IMO.
    To date, these two novel mutations in gene TCIRG1 have not been reported in the reference gene database of Chinese population. These variants have likewise not been reported outside of China in the Genome Aggregation Database (gnomAD). Our case suggests that the use of whole exome sequencing to detect these two mutations will improve the identification and early diagnosis of IMO, and more specifically, the identification of homozygous individuals with TCIRG1 gene mutation. We propose that these mutations in gene TCIRG1 could be a novel therapeutic target for the IMO in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Infantile malignant osteopetrosis is a devastating disorder of early childhood that is frequently fatal and for which there are only limited therapeutic options. Gene therapy utilizing autologous hematopoietic stem and progenitor cells represents a potentially advantageous therapeutic alternative for this multisystemic disease. Gene therapy can be performed relatively rapidly following diagnosis, will not result in graft versus host disease, and may also have potential for reduced incidences of other transplant-related complications. In this review, we have summarized the past sixteen years of research aimed at developing a gene therapy for infantile malignant osteopetrosis; these efforts have culminated in the first clinical trial employing lentiviral-mediated delivery of TCIRG1 in autologous hematopoietic stem and progenitor cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Autosomal recessive osteopetrosis (ARO) is a rare congenital disorder of defective bone resorption. The inability of osteoclasts to resorb bone compromises the development of bone marrow cavity, and ultimately, leads to defective hematopoiesis and death within the first decade. The only curative treatment currently available for certain forms of ARO is hematopoietic stem cell transplantation (HSCT). Infants over ten months of age suffering from ARO are defined as patients with advanced disease; HSCT to these patients is associated with high risk of transplant-related mortality (TRM). Because of the extreme variability of ARO clinical phenotypes, the most reliable predictive factor of TRM and graft failure risk is the residual bone marrow space volume.
    We report clinical and radiological outcomes of one patient affected by ARO and treated with HSCT at advance stage of the disease. We describe the anomalies in various tissues, including bone marrow and bones at the moment of the diagnosis and document their gradual disappearance after HSCT until their complete resolution based on magnetic resonance imaging (MRI) observations. We provided radiological images of the cranial vault bone structure modifications, correlating the radiological appearance of the optical canals and nerves and of the cerebellum with the neurological manifestations of the disease.
    Our results demonstrate that MRI is a highly sensitive technique that provides excellent images of bone marrow space before and after HSCT without exposing children to ionizing radiation. MRI also permits us to evaluate post-transplant skeletal remodeling and the deriving changes in the hematopoietic and sensory system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The osteopetroses and related sclerosing bone dysplasias can have a broad range of manifestations. Especially in the milder forms, sandwich vertebrae are an easily recognizable and reliable radiological hallmark. We report on four patients from three families presenting with sandwich vertebrae and platyspondyly. The long bone phenotypes were discordant with one patient showing modeling defects and patchy osteosclerosis, while the second displayed only metaphyseal sclerotic bands, and the third and fourth had extreme metaphyseal flaring with uniform osteosclerosis. Two of the four patients had experienced pathological fractures, two had developmental delay, but none showed cranial nerve damage, hepatosplenomegaly, or bone marrow failure. According to these clinical features the diagnoses ranged between intermediate autosomal recessive osteopetrosis and dysosteosclerosis. After exclusion of mutations in CLCN7 we performed gene panel and exome sequencing. Two novel mutations in SLC29A3 were found in the first two patients. In the third family a TCIRG1 C-terminal frameshift mutation in combination with a mutation at position +4 in intron 2 were detected. Our study adds two cases to the small group of individuals with SLC29A3 mutations diagnosed with dysosteosclerosis, and expands the phenotypic variability. The finding that intermediate autosomal recessive osteopetrosis due to TCIRG1 splice site mutations can also present with platyspondyly further increases the molecular heterogeneity of dysosteosclerosis-like sclerosing bone dysplasias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号