X chromosome inactivation

X 染色体失活
  • 文章类型: Journal Article
    在雌性异形哺乳动物的发育过程中,两个X染色体之一的X染色体失活(XCI)较早开始。了解XCI起始与细胞命运之间的关系对于了解早期雌性发育至关重要,并且需要一个可以监测单个活细胞中XCI的系统。用于XCI研究的传统胚胎干细胞(ESC)通常在培养和分化过程中自发丢失X染色体。使准确的监测变得困难。此外,大多数XCI评估方法都需要细胞破坏,阻碍细胞命运追踪.我们开发了Momiji(版本2)ESC系列来解决这些困难,能够通过荧光实时监测X染色体的活性。我们在PGK12.1ESCs的两条X染色体上插入了绿色和红色荧光报告基因以及新霉素和嘌呤霉素抗性基因,创建一个雌性ESC系,在分化过程中更忠实地保留两个X染色体。Momiji(第2版)ESC比其他ESC系表现出更稳定的XX核型,包括父母PGK12.1行。这个新工具为XCI和细胞命运之间的关系提供了有价值的见解,提高我们对早期女性发育的认识。
    In female eutherian mammal development, X-chromosome inactivation (XCI) of one of the two X chromosomes is initiated early. Understanding the relationship between the initiation of XCI and cell fate is critical for understanding early female development and requires a system that can monitor XCI in single living cells. Traditional embryonic stem cells (ESCs) used for XCI studies often lose X chromosomes spontaneously during culture and differentiation, making accurate monitoring difficult. Additionally, most XCI assessment methods necessitate cell disruption, hindering cell fate tracking. We developed the Momiji (version 2) ESC line to address these difficulties, enabling real-time monitoring of X-chromosome activity via fluorescence. We inserted green and red fluorescent reporter genes and neomycin and puromycin resistance genes into the two X chromosomes of PGK12.1 ESCs, creating a female ESC line that retains two X chromosomes more faithfully during differentiation. Momiji (version 2) ESCs exhibit a more stable XX karyotype than other ESC lines, including the parental PGK12.1 line. This new tool offers valuable insights into the relationship between XCI and cell fate, improving our understanding of early female development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    X染色体失活(XCI)是导致雌性体细胞中一个X染色体转录沉默的表观遗传过程。这种现象是常见的动物和有袋哺乳动物,但是有根本的区别。在Eutherians,选择用于沉默的X是随机的。Eutherian失活X上的DNA甲基化在转录起始位点(TSS)及其侧翼区很高,导致普遍的高DNA甲基化。这与有袋动物中的XCI形成鲜明对比,在有袋动物中,父系衍生的X总是被沉默,其中DNA甲基化在TSS和侧翼区较低。这里,我们检查了精子发生过程中tammarwallabyX染色体的DNA甲基化状态,以确定受精前和受精时父系X的DNA甲基化谱。全基因组酶促甲基化测序是在富集的流分选的群体上进行的。减数分裂,和减数分裂后的细胞。我们观察到,X显示出从精原细胞到成熟精子的DNA甲基化模式,反映了雌性体细胞组织中无活性的X。因此,父系X染色体到达卵子的DNA甲基化谱反映了成年雌性体细胞组织中转录沉默的X。我们提出了这种表观遗传特征,作为有袋动物长期追求的父系XCI印记的候选者。
    X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经发育障碍(NDD)的重要风险来源,包括智力障碍(ID)和自闭症谱系障碍(ASD),位于X染色体上的基因。由于半合子,雄性特别容易受到X连锁变异的影响,而且家系中的男性特异性分离指导了X连锁隐性条件的早期基因发现。最近,X连锁疾病不成比例地影响女性,具有复杂的遗传模式和/或呈现性别差异,已经浮出水面。这里,我们讨论了X连锁基因的遗传学和神经生物学,这些基因是理解女性NDD的范例。整合遗传,临床,和功能数据将是理解X连锁变异如何影响NDD风险架构的关键。
    A significant source of risk for neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorder (ASD), lies in genes located on the X chromosome. Males can be particularly vulnerable to X-linked variation because of hemizygosity, and male-specific segregation in pedigrees has guided earlier gene discovery for X-linked recessive conditions. More recently, X-linked disorders disproportionally affecting females, with complex inheritance patterns and/or presenting with sex differences, have surfaced. Here, we discuss the genetics and neurobiology of X-linked genes that are paradigmatic to understand NDDs in females. Integrating genetic, clinical, and functional data will be key to understand how X-linked variation contributes to the risk architecture of NDDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因剂量的变化可能具有巨大的进化潜力(例如全基因组重复),但是没有补偿机制,它们也会导致基因失调和病理。性染色体是自然发生的基因剂量差异及其补偿的范例。在基于染色体的性别决定的物种中,同一人群中的个体在性染色体的基因剂量上必然表现出“自然”差异。在这篇评论中,我们专注于哺乳动物X染色体,并讨论随着性染色体的出现而进化的剂量补偿机制的最新见解,即X-失活和X-上调。我们还讨论了遗传基因座和分子参与者的进化,以及监管的多样性和不同哺乳动物物种对剂量补偿的潜在不同要求。
    Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show \'natural\' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过体细胞遗传变异可以分析人体组织中的克隆动力学。这里,我们表明,当使用X染色体失活来选择信息性克隆突变时,对女性单细胞线粒体突变的分析得到了显著改善。将这种策略应用于人类外周单核细胞可以揭示T细胞内的克隆结构,否则这些结构会因非信息性突变而模糊。包括γ-δT细胞的分离,表明这种方法可用于破译人体组织中细胞的克隆动力学。
    Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    性别差异在神经发育过程中普遍存在,并在自闭症等神经精神疾病中发挥作用,男性比女性更普遍。在人类中,男性的大脑体积比女性大,海马体和杏仁核的发育显示出明显的性别差异。机械上,性类固醇和性染色体驱动大脑发育的这些差异,似乎在产前和青春期达到高峰。动物模型在理解性别差异方面发挥了至关重要的作用,但是对人类性别差异的研究需要一个能够概括复杂遗传性状的实验模型。为了填补这个空白,人类诱导的多能干细胞来源的脑类器官现在被用于研究复杂的遗传特征如何影响产前大脑发育。例如,自闭症患者和X染色体连锁Rett综合征和脆性X综合征患者的脑类器官显示了产前细胞增殖的差异,测量大脑体积差异,和兴奋性抑制失衡。脑类器官还揭示了由于雄激素导致的兴奋性神经元的神经发生增加。然而,尽管人们对使用脑类器官越来越感兴趣,几个关键挑战仍然存在,影响其作为模型系统的有效性。在这次审查中,我们讨论了性类固醇和性染色体是如何导致大脑发育中的性别差异的。然后,我们研究了X染色体失活作为驱动性别差异的一个因素的作用.最后,我们讨论了在研究性别差异时需要考虑的X染色体失活建模和脑类器官局限性的综合挑战。
    性别差异是自闭症等神经精神疾病的一个促成因素,这在男性中更为普遍。性别差异是通过雌激素和睾丸激素等性类固醇激素与性染色体(chrX和chrY)之间的相互作用而发生的。人类干细胞衍生的脑类器官是模拟大脑发育的实验室模型。例如,在有神经发育状况的个体中,与神经典型个体相比,脑类器官显示出神经元种群的不平衡。在这次审查中,我们讨论了性类固醇和性染色体对大脑发育的影响,以及研究性别差异时需要考虑的挑战。
    Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
    Sex differences are a contributing factor in neuropsychiatric conditions such as autism, which is more prevalent in males. Sex differences occur through interactions between sex steroid hormones such as estrogen and testosterone and sex chromosomes (chrX and chrY). Human stem cell–derived brain organoids are laboratory models that mimic brain development. For example, in individuals with neurodevelopmental conditions, brain organoids have revealed an imbalance of neuron populations compared with neurotypical individuals. In this review, we discuss sex steroid and sex chromosome influences on brain development and challenges of this model that need to be taken into account when studying sex differences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Xist,X染色体失活(XCI)的关键角色,长期以来一直被认为是顺式作用的长链非编码RNA,仅与无活性的X染色体(Xi)结合。然而,Xist在特定情况下的扩散能力也被记录在案,导致我们怀疑XistRNA可能具有Xi以外的靶标和功能。这里,以雌性小鼠胚胎干细胞(ES)和小鼠胚胎成纤维细胞(MEF)为模型,我们证明XistRNA确实可以定位到Xi之外。然而,在经历XCI的细胞(ES细胞)和XCI后细胞(MEF)中,其结合仅限于约100个基因。靶基因在功能上是不同的,但通过它们的活跃染色质状态而统一。Xist与Polycomb标记相对耗尽的社区中的靶基因启动子离散地结合,与广阔的对比,报道了人XISTRNA的聚梳富集结构域。我们发现Xist结合与常染色体基因表达的下调有关。然而,与Xi不同,Xist结合不会导致完全沉默,也不会扩散到靶基因之外。在转基因ES细胞中过度表达Xist类似地导致常染色体基因抑制,同时删除Xist的重复B基序减少常染色体结合并扰乱常染色体下调。此外,用Xist抑制剂治疗雌性ES细胞,X1导致常染色体抑制的丧失。总之,我们的发现揭示了Xist以外的约100个基因,确定重复B是小鼠体内反式功能的关键结构域,并表明常染色体靶向可以被X1小分子抑制剂破坏。
    Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist\'s ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly lead to autosomal gene suppression, while deleting Xist\'s Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by the X1 small molecule inhibitor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几个X连锁基因逃避X染色体失活(XCI),而细胞类型和组织间逃逸的差异仍未得到很好的表征。这里,我们开发了scLinaX,用于使用基于液滴的单细胞RNA测序(scRNA-seq)数据直接定量来自灭活X染色体的相对基因表达。使用大规模血液scRNA-seq数据集的scLinaX和差异表达基因分析一致地鉴定出淋巴细胞中比骨髓细胞中更强的逃逸。scLinaX扩展到10倍多体组数据集(scLinaX-multi)表明,在染色质可及性水平上,淋巴细胞的逃逸能力强于骨髓细胞。人类多器官scRNA-seq数据集的scLinaX分析还鉴定了淋巴组织和淋巴细胞中相对较强的XCI逃逸程度。最后,性别间全基因组关联研究的效应大小比较表明逃逸对基因型-表型关联的潜在影响.总的来说,scLinaX和定量的逃逸目录鉴定了跨细胞类型和组织的逃逸的异质性。
    Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    X染色体着丝粒驱动可以解释多囊卵巢综合征的患病率,并有助于卵母细胞非整倍体。更年期,和其他条件。由于雌性种系中的X失活,哺乳动物X染色体可能易受减数分裂驱动的影响。人类X着丝粒区含有可能参与减数分裂机制的基因,包括多个SPIN1和ZXDC旁组。这与多基因驱动系统一致,该系统包括雌性原始生殖细胞中活性和非活性X染色体着丝粒的差异修饰,以及减数分裂I时先前失活的X染色体着丝粒优先分离到极体。驱动机制可以解释人类和小鼠雌性种系中X染色体调节的差异,基于该区域基因编码的功能,X着丝粒周遗传或表观遗传变异体传递给后代可能导致先兆子痫,自闭症,和性别分化的差异。
    X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    X染色体失活(XCI)在XX个体内产生克隆异质性。结合人类X染色体之间的序列变异,XCI产生了个体内克隆多样性,其中两组克隆表达存在于一个或另一个X染色体上的互斥序列变体。在这里,我们询问这些克隆是否仅共存或可能彼此相互作用,以调节X连锁多样性对生物体发育的贡献。关注人类STAG2基因的X连锁编码变异,我们表明,Stag2变体克隆以预期的频率贡献大多数组织,但在Stag2WTStag2变体小鼠模型中未能形成淋巴细胞。出乎意料的是,淋巴区室中缺乏Stag2变体克隆不仅是由于细胞固有缺陷,而且需要Stag2WT克隆的持续竞争。这些发现表明,表观遗传多样性克隆之间的相互作用可以在XX个体中发挥作用,以细胞类型特异性方式塑造X连锁遗传多样性的贡献。
    X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号