Time-lapse imaging

延时成像
  • 文章类型: Journal Article
    评估受精的人类胚胎对于体外受精至关重要,人工智能正在彻底改变的任务。用于胚胎质量评估和倍性检测的现有模型可以通过有效地利用延时成像来识别关键发育时间点以最大化预测准确性而得到显着改善。解决这个问题,我们开发并比较了不同胚胎发育阶段的各种胚胎倍性状态预测模型。我们介绍贝拉,一种先进的倍性预测模型,该模型超越了以前基于图像和视频的模型,而无需胚胎学家的输入。BELA使用多任务学习来预测质量分数,然后将其用于预测倍性状态。通过在WeillCornell数据集上实现0.76的接受者工作特征曲线下面积,以区分整倍性和非整倍性胚胎,BELA与在胚胎学家手册分数上训练的模型的性能相匹配。虽然不能替代非整倍体的植入前遗传学检测,BELA举例说明了此类模型如何简化胚胎评估过程。
    Assessing fertilized human embryos is crucial for in vitro fertilization, a task being revolutionized by artificial intelligence. Existing models used for embryo quality assessment and ploidy detection could be significantly improved by effectively utilizing time-lapse imaging to identify critical developmental time points for maximizing prediction accuracy. Addressing this, we develop and compare various embryo ploidy status prediction models across distinct embryo development stages. We present BELA, a state-of-the-art ploidy prediction model that surpasses previous image- and video-based models without necessitating input from embryologists. BELA uses multitask learning to predict quality scores that are thereafter used to predict ploidy status. By achieving an area under the receiver operating characteristic curve of 0.76 for discriminating between euploidy and aneuploidy embryos on the Weill Cornell dataset, BELA matches the performance of models trained on embryologists\' manual scores. While not a replacement for preimplantation genetic testing for aneuploidy, BELA exemplifies how such models can streamline the embryo evaluation process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    影像学的最新进展表明,造血细胞在其骨髓微环境(生态位)中的空间组织调节细胞扩增,治理进步,和血液克隆疾病的白血病转化。然而,我们在癌前条件下询问利基的能力是有限的,因为这些疾病的标准小鼠模型很大程度上依赖于将突变克隆移植到骨髓微环境受损的条件小鼠中。这里,我们利用活体动物显微镜和超低剂量全身或局灶性照射来捕获单细胞,并在功能保留的微环境中早期扩增良性/癌前克隆。与非条件对照相比,0.5Gy全身照射(WBI)允许细胞稳定植入超过30周。微环境的体内跟踪和功能分析显示血管完整性没有变化,细胞活力,和基质细胞的HSC支持功能,表明放射性损伤后炎症轻微.该方法实现了Tet2+/-及其健康对应物的体内成像,显示在共享微环境中的优先定位,同时形成离散的微生态位。值得注意的是,与生态位的固定关联仅发生在细胞亚群中,如果没有实时成像,则无法识别。该策略可广泛应用于在空间背景下研究克隆疾病。
    Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2+/- and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在雌性异形哺乳动物的发育过程中,两个X染色体之一的X染色体失活(XCI)较早开始。了解XCI起始与细胞命运之间的关系对于了解早期雌性发育至关重要,并且需要一个可以监测单个活细胞中XCI的系统。用于XCI研究的传统胚胎干细胞(ESC)通常在培养和分化过程中自发丢失X染色体。使准确的监测变得困难。此外,大多数XCI评估方法都需要细胞破坏,阻碍细胞命运追踪.我们开发了Momiji(版本2)ESC系列来解决这些困难,能够通过荧光实时监测X染色体的活性。我们在PGK12.1ESCs的两条X染色体上插入了绿色和红色荧光报告基因以及新霉素和嘌呤霉素抗性基因,创建一个雌性ESC系,在分化过程中更忠实地保留两个X染色体。Momiji(第2版)ESC比其他ESC系表现出更稳定的XX核型,包括父母PGK12.1行。这个新工具为XCI和细胞命运之间的关系提供了有价值的见解,提高我们对早期女性发育的认识。
    In female eutherian mammal development, X-chromosome inactivation (XCI) of one of the two X chromosomes is initiated early. Understanding the relationship between the initiation of XCI and cell fate is critical for understanding early female development and requires a system that can monitor XCI in single living cells. Traditional embryonic stem cells (ESCs) used for XCI studies often lose X chromosomes spontaneously during culture and differentiation, making accurate monitoring difficult. Additionally, most XCI assessment methods necessitate cell disruption, hindering cell fate tracking. We developed the Momiji (version 2) ESC line to address these difficulties, enabling real-time monitoring of X-chromosome activity via fluorescence. We inserted green and red fluorescent reporter genes and neomycin and puromycin resistance genes into the two X chromosomes of PGK12.1 ESCs, creating a female ESC line that retains two X chromosomes more faithfully during differentiation. Momiji (version 2) ESCs exhibit a more stable XX karyotype than other ESC lines, including the parental PGK12.1 line. This new tool offers valuable insights into the relationship between XCI and cell fate, improving our understanding of early female development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大规模的药物发现和再利用具有挑战性。识别作用机制(MOA)至关重要,然而,目前的方法是昂贵和低吞吐量。在这里,我们提出了一种通过分析线粒体表型变化来鉴定MOA的方法。通过对线粒体形态和膜电位进行时间成像,我们建立了一个监测时间分辨线粒体图像的管道,产生的数据集包含570,096个暴露于1,068个美国食品和药物管理局批准的药物的细胞的单细胞图像。一个名为MitoReID的深度学习模型,使用重新识别(ReID)框架和膨胀的3DResNet主干,已开发。在测试集中,它达到了76.32%的Rank-1和65.92%的平均精度,并根据线粒体表型成功地鉴定了六种未经训练的药物的MOA。此外,MitoReID将环氧合酶-2抑制鉴定为茶叶中天然化合物表儿茶素的MOA,在体外成功验证。因此,我们的方法为目标识别提供了一种自动化且具有成本效益的替代方案,可以加速大规模药物发现和再利用。
    Large-scale drug discovery and repurposing is challenging. Identifying the mechanism of action (MOA) is crucial, yet current approaches are costly and low-throughput. Here we present an approach for MOA identification by profiling changes in mitochondrial phenotypes. By temporally imaging mitochondrial morphology and membrane potential, we established a pipeline for monitoring time-resolved mitochondrial images, resulting in a dataset comprising 570,096 single-cell images of cells exposed to 1,068 United States Food and Drug Administration-approved drugs. A deep learning model named MitoReID, using a re-identification (ReID) framework and an Inflated 3D ResNet backbone, was developed. It achieved 76.32% Rank-1 and 65.92% mean average precision on the testing set and successfully identified the MOAs for six untrained drugs on the basis of mitochondrial phenotype. Furthermore, MitoReID identified cyclooxygenase-2 inhibition as the MOA of the natural compound epicatechin in tea, which was successfully validated in vitro. Our approach thus provides an automated and cost-effective alternative for target identification that could accelerate large-scale drug discovery and repurposing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    变形虫细胞运动性是许多生物过程的基础,如胚胎发生,免疫反应,伤口愈合,和癌症转移。它的特征是特定的细胞形状变化:膜突起的延伸和缩回,被称为伪足。研究这种类型的细胞运动机制的常用方法是研究突变细胞系运动的表型差异。为了描述这种差异,需要方法来量化迁移细胞的轮廓动力学。AmoePy是一个基于Python的软件包,提供细胞分割工具,轮廓检测以及分析和模拟轮廓动力学。首先,从移动细胞的延时显微镜记录的每一帧中提取细胞轮廓作为节点链的数字表示。然后,当细胞轮廓随时间演变时,跟踪这些节点的动态(称为虚拟标记)。从这些数据来看,可以计算出表征轮廓动力学的各种量,例如虚拟标记的位移或标记链的局部拉伸率。它们的动力学通常在时空图上可视化,所谓的kypographs,其中显示沿细胞轮廓的不同位置的时间演变。使用AmoePy,您可以直接创建kymograph图和视频从实验亮场或荧光图像的活动细胞的堆栈。本章提供了有关如何安装和使用AmoePy的动手指南。
    Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines. To characterize such differences, methods are required to quantify the contour dynamics of migrating cells. AmoePy is a Python-based software package that provides tools for cell segmentation, contour detection as well as analyzing and simulating contour dynamics. First, a digital representation of the cell contour as a chain of nodes is extracted from each frame of a time-lapse microscopy recording of a moving cell. Then, the dynamics of these nodes-referred to as virtual markers-are tracked as the cell contour evolves over time. From these data, various quantities can be calculated that characterize the contour dynamics, such as the displacement of the virtual markers or the local stretching rate of the marker chain. Their dynamics is typically visualized in space-time plots, the so-called kymographs, where the temporal evolution is displayed for the different locations along the cell contour. Using AmoePy, you can straightforwardly create kymograph plots and videos from stacks of experimental bright-field or fluorescent images of motile cells. A hands-on guide on how to install and use AmoePy is provided in this chapter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    免疫应答依赖于免疫细胞向感染或损伤部位的有效和协调的迀移。为了到达免疫威胁的部位通常需要免疫细胞通过复杂的组织和血管网络的远程导航。趋化性,细胞迁移由结合感觉受体的细胞吸引化学物质的梯度引导,是这个回应的核心。趋化因子受体大多属于G蛋白偶联受体(GPCR)家族,但是引诱剂-受体信号传导指导细胞迁移的方式尚未完全了解。直视趋化性腔室与延时显微镜相结合,为研究细胞对不同引诱剂景观的反应的动态细节提供了强大的工具。这里,我们描述了应用一个这样的小室(Dunn小室)研究骨髓源性巨噬细胞对补体C5a梯度的趋化性.
    Immune responses rely on efficient and coordinated migration of immune cells to the site of infection or injury. To reach the site of immunological threat often requires long-range navigation of immune cells through complex tissue and vascular networks. Chemotaxis, cell migration steered by gradients of cell-attractive chemicals that bind sensory receptors, is central to this response. Chemoattractant receptors mostly belong to the G-protein-coupled receptor (GPCR) family, but the way attractant-receptor signaling directs cell migration is not fully understood. Direct-viewing chemotaxis chambers combined with time-lapse microscopy give a powerful tool to study the dynamic details of cells\' responses to different attractant landscapes. Here, we describe the application of one such chamber (the Dunn chamber) to study bone marrow-derived macrophage chemotaxis to gradients of complement C5a.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    指导周围神经再生的细胞内在机制在很大程度上仍未被研究。从而限制了我们对这些过程的理解,并限制了新型临床疗法的发展。体外培养的原代成年大鼠背根神经节(DRG)神经元的使用已经确立。尽管如此,这些细胞可能对培养具有挑战性,并且到目前为止还不适合进行强大的转染或活细胞成像。用荧光质粒构建体转染这些细胞以标记亚细胞结构的能力,结合高分辨率延时成像有可能提供宝贵的洞察力,以了解周围神经元如何协调其再生反应,以及该过程涉及哪些特定的细胞结构。在这里,我们描述了一种促进成年大鼠DRG神经元的转染和随后的活体成像的方案。
    The cell intrinsic mechanisms directing peripheral nerve regeneration have remained largely understudied, thus limiting our understanding of these processes and constraining the advancement of novel clinical therapeutics. The use of primary adult rat dorsal root ganglion (DRG) neurons cultured in vitro is well established. Despite this, these cells can be challenging to culture and have so far not been amenable to robust transfection or live-cell imaging. The ability to transfect these cells with fluorescent plasmid constructs to label subcellular structures, combined with high resolution time-lapse imaging has the potential to provide invaluable insight into how peripheral neurons coordinate their regenerative response, and which specific cellular structures are involved in this process. Here we describe a protocol that facilitates transfection and subsequent live-imaging of adult rat DRG neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动蛋白流指的是F-肌动蛋白细胞骨架的运动,并已在许多不同的细胞类型中观察到,尤其是在活动细胞中,包括神经元生长锥。肌动蛋白流的方向通常从细胞的外围向中心逆行。肌动蛋白流可通过底物-细胞骨架偶联用于细胞的向前运动;因此,肌动蛋白流的一个关键功能是细胞运动。在这一章中,我们说明了三种不同的方法来定量从培养的Aplysia袋细胞神经元衍生的生长锥中的逆行F-肌动蛋白流。这些方法包括跟踪表面标记珠的移动以及通过差分干涉对比(DIC)成像或荧光斑点显微镜(FSM)获得的延时序列的测速分析。由于尺寸大,Aplysia神经元生长锥是唯一适合这些方法;然而,它们也可以应用于具有清晰的富含F-肌动蛋白的外周结构域的任何其他生长锥。
    Actin flow refers to the motion of the F-actin cytoskeleton and has been observed in many different cell types, especially in motile cells including neuronal growth cones. The direction of the actin flow is generally retrograde from the periphery toward the center of the cell. Actin flow can be harnessed for forward movement of the cell through substrate-cytoskeletal coupling; thus, a key function of actin flow is in cell locomotion. In this chapter, we illustrate three different methods of quantifying retrograde F-actin flow in growth cones derived from cultured Aplysia bag cell neurons. These methods include tracking the movement of surface marker beads as well as kymograph analysis of time-lapse sequences acquired by differential interference contrast (DIC) imaging or fluorescent speckle microscopy (FSM). Due to their large size, Aplysia neuronal growth cones are uniquely suited for these methods; however, they can also be applied to any other growth cones with clear F-actin-rich peripheral domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年中,轴突生长和寻路过程中微管排列和动力学的研究获得了科学兴趣。并且已经实现了用于其可视化和分析的大量技术资源。在这一章中,我们描述了胚胎皮质和视网膜神经元的细胞培养方案,用微管聚合的荧光报告基因转染它们的方法,以及延时成像和定量程序,以研究轴突形态发生过程中的微管动力学。
    The study of microtubules arrangements and dynamics during axon outgrowth and pathfinding has gained scientific interest during the last decade, and numerous technical resources for its visualization and analysis have been implemented. In this chapter, we describe the cell culture protocols of embryonic cortical and retinal neurons, the methods for transfecting them with fluorescent reporters of microtubule polymerization, and the procedures for time-lapse imaging and quantification in order to study microtubule dynamics during axon morphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    延时实时成像的使用使我们能够跟踪神经突形成过程中的动态变化。使用急性脑切片的离体活体成像提供了比培养细胞更生理的环境。要做到这一点,一定的标记方法是必要的可视化和识别神经突形态。为了了解神经突形成早期神经突结构的动力学,我们在本章中描述了在P0使用共聚焦显微镜结合子宫内电穿孔(IUE)的离体活体成像。
    The use of time-lapse live imaging enables us to track the dynamic changes in neurites during their formation. Ex vivo live imaging with acute brain slices provides a more physiological environment than cultured cells. To accomplish this, a certain method of labeling is necessary to visualize and identify neurite morphology. To understand the dynamics of neurite structure at early stages of neurite formation, we describe in this chapter ex vivo live imaging using a confocal microscope at P0 in combination with in utero electroporation (IUE).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号