Telencephalon

端脑
  • 文章类型: Journal Article
    亨廷顿病(HD)引起纹状体和皮质神经元的选择性变性,导致共存的仍然有功能和功能失调的细胞镶嵌。对这些细胞状态之间的非细胞自主机制的影响知之甚少。在这里,我们用健康或HD细胞生成了端脑器官,单独生长或作为两种基因型的马赛克。单细胞RNA测序显示HD类器官的腹侧命运获取中的神经发育异常,细胞结构和转录缺陷导致更少的GABA能神经元证实,而背部种群主要在成熟轨迹上表现出温和的表型。马赛克类器官中的健康细胞恢复了HD细胞身份,轨迹,突触密度,和细胞-细胞接触时的通讯通路,而当与HD细胞一起生长时没有显示出显著的改变。这些发现突出了HD的细胞类型特异性改变和健康细胞的有益非细胞自主效应。强调在疾病进展和治疗中调节细胞间通讯的治疗潜力。
    Huntington\'s disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:大脑的性分化发生在所有主要脊椎动物谱系中,但在分子和细胞水平上尚未得到很好的理解。不像大多数脊椎动物,变性鱼在成年期对社会刺激具有显著的改变生殖性的能力,提供了一个独特的机会来理解神经系统可以启动和协调性分化的机制。
    方法:本研究使用单核RNA测序技术在海葵鱼两栖鱼中探索前脑的性别分化,产生第一个改变性别的大脑的细胞图谱。
    结果:我们发现了细胞类型特异性基因表达的广泛性别差异,细胞的相对比例,基线神经元兴奋,并预测了神经元间的交流。此外,我们确定了胆囊收缩素,甘丙肽,和雌激素系统作为性分化的中心分子轴。在这些发现的支持下,我们提出了一个在保守的脊椎动物社会决策网络中的性别分化模型,该网络跨越神经元和神经胶质的多个亚型,包括位于视前区域内的神经元亚群,以调节性腺分化。
    结论:这项工作加深了我们对脊椎动物大脑中性别分化的理解,并定义了一套丰富的分子和细胞途径,这些途径在海葵鱼的成年性别变化过程中进行分化。
    这项研究为性别变化的海葵鱼(Amphiprionocellaris)的大脑性别差异提供了关键见解,一种在成年后根据社会环境改变性别的物种。使用单核RNA测序,该研究提供了第一个脑细胞图谱,显示了两个关键生殖区域的性别差异:视前区和端脑。该研究确定了细胞类型比例和基因表达的显着性别差异,特别是在共表达神经肽胆囊收缩素的放射状神经胶质和谷氨酸能神经元中。它还突出了可能参与性腺调节的视前区神经元的差异。这项工作加深了我们对脊椎动物大脑性别分化的理解,尤其是那些能够改变成人性别的人,并阐明该过程的关键分子和细胞起点和终点。
    BACKGROUND: Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation.
    METHODS: This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain.
    RESULTS: We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation.
    CONCLUSIONS: This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
    This study provides key insights into brain sex differences in sex-changing anemonefish (Amphiprion ocellaris), a species that changes sex in adulthood in response to the social environment. Using single nucleus RNA-sequencing, the study provides the first brain cellular atlas showing sex differences in two crucial reproductive areas: the preoptic area and telencephalon. The research identifies notable sex-differences in cell-type proportions and gene expression, particularly in radial glia and glutamatergic neurons that co-express the neuropeptide cholecystokinin. It also highlights differences in preoptic area neurons likely involved in gonadal regulation. This work deepens our understanding of sexual differentiation of the brain in vertebrates, especially those capable of adult sex change, and illuminates key molecular and cellular beginning and endpoints of the process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    爬行动物的端脑被认为是理解前脑进化的关键。然而,一个有意义的框架来组织任何爬行动物的端脑,除了罕见的例外,尚未提出。为了解决这个知识差距,对两种鳄鱼的端脑进行了调查。各种形态学染色被用来检查横向组织,水平,和截面的矢状平面。除了提供单个原子核的描述,大脑部分是根据两个特征组织的。一个与两个固定有关,内部结构:侧脑室和背侧延髓层。另一个是神经元排列到任何一层,皮质,或者不是,核。从这个角度来看,所有结构,除了有限的例外,无论截面平面如何,都可以准确地放置在端脑内。此外,这个框架可以应用于其他爬行动物。该方案的进一步扩展表明,端脑中的所有结构都可以分为以下两个类别之一:骨性或基底性。
    The telencephalon of reptiles has been suggested to be the key to understanding the evolution of the forebrain. Nevertheless, a meaningful framework to organize the telencephalon in any reptile has, with rare exception, yet to be presented. To address this gap in knowledge, the telencephalon was investigated in two species of crocodiles. A variety of morphological stains were used to examine tissue in transverse, horizontal, and sagittal planes of sections. Besides providing a description of individual nuclei, brain parts were organized based on two features. One was related to two fixed, internal structures: the lateral ventricle and the dorsal medullary lamina. The other was the alignment of neurons into either layers, cortex, or not, nucleus. Viewed from this perspective, all structures, with limited exceptions, could be accurately placed within the telencephalon regardless of the plane of section. Furthermore, this framework can be applied to other reptiles. A further extension of this scheme suggests that all structures in the telencephalon could be grouped into one of two categories: pallial or basal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非洲绿松石鱼(Nothobranchiusfurzeri)结合了短寿命和自发的与年龄相关的神经再生能力丧失,一种有趣的特征,不典型的硬骨鱼。衰老对成体干细胞壁龛细胞组成的影响,导致出生后神经和神经胶质生成的急剧下降,仍然难以捉摸。短寿命GRZ-AD菌株的成年雌性killifish的端脑的单细胞RNA测序揭示了神经胶质和非神经胶质性质的祖细胞,不同的兴奋性和抑制性神经元亚型,以及非神经细胞类型。祖细胞的亚聚类确定了四种放射状神经胶质(RG)细胞类型,两个非神经胶质祖细胞(NGP)和四个中间(细胞间)细胞状态。两个星形胶质细胞,一个室管膜,在前脑的不同位置发现了一种神经上皮样(NE)RG亚型,虽然增殖,活跃的NGP遍布各地。谱系推断指出,NE-RG和NGP是神经胶质和神经发生的起始和代言人群体。随着年龄的增长,单细胞RNA测序揭示了星形胶质细胞和细胞间状态比例的主要扰动,在特定亚型的分子特征中,包括改变的MAPK,mTOR,缺口,和Wnt途径。这个细胞目录的年轻再生能力的killifish端脑,结合衰老相关转录组变化的证据,提供了一个有用的资源来理解年龄依赖性神经可塑性的分子基础。该数据也可通过在线数据库(killifishbrain_scseq)获得。
    The African turquoise killifish (Nothobranchius furzeri) combines a short lifespan with spontaneous age-associated loss of neuro-regenerative capacity, an intriguing trait atypical for a teleost. The impact of aging on the cellular composition of the adult stem cell niches, leading to this dramatic decline in the postnatal neuro- and gliogenesis, remains elusive. Single-cell RNA sequencing of the telencephalon of young adult female killifish of the short-lived GRZ-AD strain unveiled progenitors of glial and non-glial nature, different excitatory and inhibitory neuron subtypes, as well as non-neural cell types. Sub-clustering of the progenitors identified four radial glia (RG) cell types, two non-glial progenitor (NGP) and four intermediate (intercell) cell states. Two astroglia-like, one ependymal, and one neuroepithelial-like (NE) RG subtype were found at different locations in the forebrain in line with their role, while proliferative, active NGPs were spread throughout. Lineage inference pointed to NE-RG and NGPs as start and intercessor populations for glio- and neurogenesis. Upon aging, single-cell RNA sequencing revealed major perturbations in the proportions of the astroglia and intercell states, and in the molecular signatures of specific subtypes, including altered MAPK, mTOR, Notch, and Wnt pathways. This cell catalog of the young regeneration-competent killifish telencephalon, combined with the evidence for aging-related transcriptomic changes, presents a useful resource to understand the molecular basis of age-dependent neuroplasticity. This data is also available through an online database (killifishbrain_scseq).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    毒死蜱(CPF)是一种广泛使用的有机磷酸盐杀虫剂,尽管它的过度使用会导致环境污染,引起人们对其对人类健康的不利影响的担忧。在这方面,由于其治疗特性,荨麻是抵消化学“污染物”毒性的有希望的候选者。因此,我们的研究旨在研究荨麻乙醇提取物(UDE)减轻毒死蜱诱导的毒性的潜力。已经鉴定了荨麻乙醇提取物中的八种化合物,其中大多数都具有作为抗氧化剂的巨大潜力,抗炎,和神经保护剂.毒死蜱暴露改变了孵化率,增加了致畸作用的发生率,并上调斑马鱼幼虫端脑脑源性神经营养因子(Bdnf)的表达。另一方面,UDE证明了对CPF诱导的致畸性的预防作用,表现为较低的形态畸形率。此外,UDE表现出相当的保护作用,维持端脑的生理状态。此外,CPF改变了幼虫的运动行为,其特征是不规则游泳和活动增加。UDE略微减弱了这种有缺陷的行为模式。我们的发现表明,UDE对CPF诱导的毒性具有显著的保护特性,可能是由其天然抗氧化剂和抗炎含量赋予的。尽管如此,需要进一步的研究来阐明UDE保护作用的招募机制和相关途径。
    Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical \'contaminant\' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE\'s protective effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DARPP-32(多巴胺和cAMP调节的磷蛋白Mr.32kDa)是一种磷蛋白,由整合细胞内途径并在各种生理功能中发挥作用的多种受体调节。它由多巴胺能受体通过cAMP/蛋白激酶A(PKA)途径调节,其调节苏氨酸34(Thr34)的磷酸化。当在Thr34磷酸化时,DARPP-32成为有效的蛋白磷酸酶-1(PP1)抑制剂。由于多巴胺参与GABA能神经元的发育,而DARPP-32在发育中的大脑中表达,DARPP-32可能在GABA能神经元发育中起作用。我们克隆了斑马鱼darpp-32基因(ppp1r1b)基因,并观察到它在其抑制域(Thr34及其周围残基)和对接基序(残基7-11(KKIQF))中在进化上是保守的。我们还通过免疫荧光对整个受精后5天(dpf)斑马鱼幼虫脑的darpp-32蛋白表达进行了表征,并证明darpp-32主要在接受多巴胺能投射的区域表达(pallium,亚镓,视前区,和下丘脑)。我们证明,多巴胺通过降低5dpf斑马鱼幼虫大脑中p-darpp-32的水平来急剧抑制darpp-32的活性。此外,darpp-32的击倒导致5dpf幼虫脑下皮层中GABA能神经元的数量减少,伴随着DAer能神经元数量的增加。最后,我们证明了darpp-32在发育过程中的下调降低了5dpf斑马鱼幼虫的运动行为。因此,我们的观察表明,darpp-32是一种进化上保守的多巴胺受体信号调节因子,是发育中的端脑GABA能神经元形成所必需的.
    DARPP-32 (dopamine and cAMP-regulated phosphoprotein Mr. 32 kDa) is a phosphoprotein that is modulated by multiple receptors integrating intracellular pathways and playing roles in various physiological functions. It is regulated by dopaminergic receptors through the cAMP/protein kinase A (PKA) pathway, which modulates the phosphorylation of threonine 34 (Thr34). When phosphorylated at Thr34, DARPP-32 becomes a potent protein phosphatase-1 (PP1) inhibitor. Since dopamine is involved in the development of GABAergic neurons and DARPP-32 is expressed in the developing brain, it is possible that DARPP-32 has a role in GABAergic neuronal development. We cloned the zebrafish darpp-32 gene (ppp1r1b) gene and observed that it is evolutionarily conserved in its inhibitory domain (Thr34 and surrounding residues) and the docking motif (residues 7-11 (KKIQF)). We also characterized darpp-32 protein expression throughout the 5 days post-fertilization (dpf) zebrafish larval brain by immunofluorescence and demonstrated that darpp-32 is mainly expressed in regions that receive dopaminergic projections (pallium, subpallium, preoptic region, and hypothalamus). We demonstrated that dopamine acutely suppressed darpp-32 activity by reducing the levels of p-darpp-32 in the 5dpf zebrafish larval brain. In addition, the knockdown of darpp-32 resulted in a decrease in the number of GABAergic neurons in the subpallium of the 5dpf larval brain, with a concomitant increase in the number of DAergic neurons. Finally, we demonstrated that darpp-32 downregulation during development reduced the motor behavior of 5dpf zebrafish larvae. Thus, our observations suggest that darpp-32 is an evolutionarily conserved regulator of dopamine receptor signaling and is required for the formation of GABAergic neurons in the developing telencephalon.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    复杂的大脑是背骨动物成功的核心。然而,与脊椎动物大脑进化有关的直接证据几乎完全来自现存的物种,留下巨大的知识空白。虽然罕见,化石中的软组织保存可以对神经解剖学进化模式产生独特的见解。古生物学证据来自一个保存特别完好的宾夕法尼亚人(〜318Ma)的actinopterygian,头孢,对祖先的放线术大脑状况的先前解释提出了质疑。然而,重大进化创新的顺序和时机,比如外翻的端脑,改良的脑膜组织,下丘脑下叶,仍然不清楚。这里,我们报告了来自巴西最新的石炭纪-最早的二叠纪(〜299Ma)的两种不同的放线动物形态类型,它们显示出广泛的大脑软组织保存,颅神经,眼睛,和潜在的心血管组织。这些化石证实了从Coccocephalus得出的推论,同时增加了关于神经解剖学进化的新信息。骨骼特征表明,这些巴西形态类型中的一种比另一种更与活的足翅目动物密切相关,这也反映在软组织特征上。重要的是,更顶向的形态类型显示了现存的放线体的关键神经解剖学特征-一种外翻的端脑-在其他形态类型和头颅中都不存在。所有保存的古生代放线动物的大脑都显示出广泛的相似性,包括内陷的小脑,下丘脑下叶,还有一个小前脑.在每种情况下,保存的大脑远小于封闭的颅腔。该等级的石炭纪放线体共有的神经解剖学相似性反映了放线体的可能原始条件,提供了一个修正的模型来解释脊椎动物生命树的一个主要分支中的大脑进化。
    A complex brain is central to the success of backboned animals. However, direct evidence bearing on vertebrate brain evolution comes almost exclusively from extant species, leaving substantial knowledge gaps. Although rare, soft-tissue preservation in fossils can yield unique insights on patterns of neuroanatomical evolution. Paleontological evidence from an exceptionally preserved Pennsylvanian (∼318 Ma) actinopterygian, Coccocephalus, calls into question prior interpretations of ancestral actinopterygian brain conditions. However, the ordering and timing of major evolutionary innovations, such as an everted telencephalon, modified meningeal tissues, and hypothalamic inferior lobes, remain unclear. Here, we report two distinct actinopterygian morphotypes from the latest Carboniferous-earliest Permian (∼299 Ma) of Brazil that show extensive soft-tissue preservation of brains, cranial nerves, eyes, and potential cardiovascular tissues. These fossils corroborate inferences drawn from ✝Coccocephalus, while adding new information about neuroanatomical evolution. Skeletal features indicate that one of these Brazilian morphotypes is more closely related to living actinopterygians than the other, which is also reflected in soft-tissue features. Significantly, the more crownward morphotype shows a key neuroanatomical feature of extant actinopterygians-an everted telencephalon-that is absent in the other morphotype and ✝Coccocephalus. All preserved Paleozoic actinopterygian brains show broad similarities, including an invaginated cerebellum, hypothalamus inferior lobes, and a small forebrain. In each case, preserved brains are substantially smaller than the enclosing cranial chamber. The neuroanatomical similarities shared by this grade of Permo-Carboniferous actinopterygians reflect probable primitive conditions for actinopterygians, providing a revised model for interpreting brain evolution in a major branch of the vertebrate tree of life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    海绵窦硬脑膜动静脉瘘可因皮质静脉回流和充血而引起脑水肿和出血。了解复杂的静脉回流和引流途径对于治疗计划至关重要。这里,我们介绍了一例海绵窦硬脑膜动静脉瘘,并通过两个独立的端脑静脉终止,由Rosenthal再生障碍性基底静脉引起皮质静脉回流。该患者表现为复视和眼睛发红,并被诊断为CognardIIab型海绵窦硬脑膜动静脉瘘。分流由颈内动脉和颈外动脉的硬脑膜分支提供。确定了多个涉及海绵间窦和左海绵窦内侧的分流点。引流到眶上静脉和颅内静脉,包括两个独立的末端脑静脉,一个通过大脑中浅静脉通向海绵窦外侧,另一个通过小静脉通向海绵窦,在没有罗森塔尔基底静脉的情况下导致基底神经节静脉充血。在经静脉栓塞期间,颅内静脉,海绵窦,使用双导管技术结合线圈和液体栓塞技术消除了海绵间窦。端脑静脉变异可导致海绵窦引流到基底节和眶额脑中。这种独特的引流方式强调了在管理海绵窦硬脑膜动静脉瘘时识别解剖变化的重要性。
    Cavernous sinus dural arteriovenous fistula can cause cerebral edema and hemorrhage due to cortical venous reflux and congestion. Understanding complex venous reflux and drainage routes is crucial for treatment planning. Here, we present a case of a cavernous sinus dural arteriovenous fistula with cortical venous reflux via two separate terminations of the telencephalic veins caused by an aplastic basal vein of Rosenthal. The patient presented with diplopia and eye redness and was diagnosed with a Cognard type IIa + b cavernous sinus dural arteriovenous fistula. The shunt was supplied by the dural branches of the internal and external carotid arteries. Multiple shunt points involving the intercavernous sinus and the medial aspect of the left cavernous sinus were identified, with drainage into the supraorbital and intracranial veins, including two separate terminations of the telencephalic veins, one leading to the laterocavernous sinus via the superficial middle cerebral vein and the other to the cavernous sinus via the uncal vein, resulting in basal ganglia venous congestion in the absence of the basal vein of Rosenthal. During transvenous embolization, the intracranial veins, cavernous sinus, and intercavernous sinus were obliterated using a double-catheter technique with a combination of coils and liquid embolics. Telencephalic venous variations can lead to cavernous sinus drainage into the basal ganglia and orbitofrontal brain. This unique drainage pattern underscores the importance of recognizing anatomical variations when managing cavernous sinus dural arteriovenous fistula.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Dataset
    性别偏见在神经发育障碍的患病率/病理学中是已知的。已知某些大脑区域的性别依赖性差异是通过暴露于性激素而在围产期出现的,而啮齿动物胚胎大脑中的基因表达模式在男性和女性之间似乎并不完全相同。为了研究小鼠胚胎期基因表达和皮质组织的潜在性别差异,我们使用大量RNA-seq数据,对胚胎日(E)11.5天(神经干细胞扩增高峰)和E14.5天(神经发生高峰)端脑的基因表达进行了综合分析.因此,我们的数据显示,在E11.5基因表达模式中存在明显的性别差异,但在神经发生达到高峰时,E14.5基因表达模式中存在明显的性别差异。这些数据可用于探索表现出性别差异的基因对大脑发育差异的潜在贡献。此外,我们的数据强调了研究胚胎期对于更深入了解大脑发育中的性别差异的重要性。
    Sex bias is known in the prevalence/pathology of neurodevelopmental disorders. Sex-dependent differences of the certain brain areas are known to emerge perinatally through the exposure to sex hormones, while gene expression patterns in the rodent embryonic brain does not seem to be completely the same between male and female. To investigate potential sex differences in gene expression and cortical organization during the embryonic period in mice, we conducted a comprehensive analysis of gene expression for the telencephalon at embryonic day (E) 11.5 (a peak of neural stem cell expansion) and E14.5 (a peak of neurogenesis) using bulk RNA-seq data. As a result, our data showed the existence of notable sex differences in gene expression patterns not obviously at E11.5, but clearly at E14.5 when neurogenesis has become its peak. These data can be useful for exploring potential contribution of genes exhibiting sex differences to the divergence in brain development. Additionally, our data underscore the significance of studying the embryonic period to gain a deeper understanding of sex differences in brain development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊椎动物海马结构是空间认知比较分析对话的核心,特别是在不同脊椎动物类别中发现的变异。假设现存两栖动物的内侧皮层(MP)类似于祖先茎四足动物的海马结构(HF),我们认为,现代羊膜的HF始于MP,其特征是相对未分化的细胞结构,更直接的丘脑/嗅觉感觉输入,以及在联想学习记忆过程中更广泛的作用。因此,羊膜中的海马进化,尤其是哺乳动物,可以被视为朝着具有明确细分的细胞架构发展,区域连通性,和支持地图般的空间表示的功能专业化。然后,我们总结了有关两栖动物空间认知及其潜在大脑组织的越来越多的文献。强调MP/HF,我们强调,对两栖动物空间认知的进一步研究将为HF在空间记忆过程中的作用提供新的见解,以及它们的支持神经机制。更完整的海马进化重建将受益于对非哺乳动物脊椎动物的额外研究,两栖动物特别感兴趣。
    Vertebrate hippocampal formation is central to conversations on the comparative analysis of spatial cognition, especially in light of variation found in different vertebrate classes. Assuming the medial pallium (MP) of extant amphibians resembles the hippocampal formation (HF) of ancestral stem tetrapods, we propose that the HF of modern amniotes began with a MP characterized by a relatively undifferentiated cytoarchitecture, more direct thalamic/olfactory sensory inputs, and a more generalized role in associative learning-memory processes. As such, hippocampal evolution in amniotes, especially mammals, can be seen as progressing toward a cytoarchitecture with well-defined subdivisions, regional connectivity, and a functional specialization supporting map-like representations of space. We then summarize a growing literature on amphibian spatial cognition and its underlying brain organization. Emphasizing the MP/HF, we highlight that further research into amphibian spatial cognition would provide novel insight into the role of the HF in spatial memory processes, and their supporting neural mechanisms. A more complete reconstruction of hippocampal evolution would benefit from additional research on non-mammalian vertebrates, with amphibians being of particular interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号