Systems neuroscience

系统神经科学
  • 文章类型: Journal Article
    关键时期的可塑性对于皮质神经元的功能成熟很重要。虽然皮质层的可塑性特征不同,目前尚不清楚关键时段的时机是否受其中共同或独特的分子机制控制。我们在这里阐明了初级视觉皮层中眼优势可塑性的关键时期的层特异性调节。缺乏内源性大麻素合成酶二酰甘油脂肪酶-α的小鼠表现出早熟的关键时期,2/3和4层中抑制性突触功能的较早成熟,并且仅在2/3层中损害了定向选择性的双眼匹配的发展。大麻素受体的激活在第2/3层的正常关键时期恢复了眼优势可塑性。抑制GABAA受体挽救了第4层早熟的眼优势可塑性。因此,内源性大麻素部分通过以层依赖的方式发展抑制性突触功能来调节视功能的关键时期和成熟。
    Plasticity during the critical period is important for the functional maturation of cortical neurons. While characteristics of plasticity are diverse among cortical layers, it is unknown whether critical period timing is controlled by a common or unique molecular mechanism among them. We here clarified layer-specific regulation of the critical period timing of ocular dominance plasticity in the primary visual cortex. Mice lacking the endocannabinoid synthesis enzyme diacylglycerol lipase-α exhibited precocious critical period timing, earlier maturation of inhibitory synaptic function in layers 2/3 and 4, and impaired development of the binocular matching of orientation selectivity exclusively in layer 2/3. Activation of cannabinoid receptor restored ocular dominance plasticity at the normal critical period in layer 2/3. Suppression of GABAA receptor rescued precocious ocular dominance plasticity in layer 4. Therefore, endocannabinoids regulate critical period timing and maturation of visual function partly through the development of inhibitory synaptic functions in a layer-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺血性中风会导致脑电波去极化,称为梗死周围去极化(PID)。这里,我们评估了托吡酯,一种用于治疗癫痫和缓解偏头痛的神经保护药物,有可能降低PID。我们采用了一种可以可靠且可重复地诱导PID的光血栓性缺血大鼠模型,并开发了一种联合的脑电图-激光散斑对比成像(ECoG-LSCI)平台,以同时监测神经元活动和脑血流量(CBF)。光血栓性缺血后施用托吡酯不能挽救CBF,但显着恢复了原发性体感皮层前肢区域的体感诱发电位。此外,通过氯化2,3,5-三苯基四唑(TTC)染色研究梗死体积,通过Nissl染色评估神经元存活。机械上,炎症标志物的水平,如ED1(CD68),Iba-1和GFAP,服用托吡酯后显著下降,BDNF表达也是如此,而NeuN和Bcl-2/Bax的表达增加,这表明炎症减少和神经保护改善。
    Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元合奏对于情景记忆和空间映射至关重要。Sleep,特别是非快速眼动(NREM),对记忆巩固至关重要,因为它通过大脑振荡触发可塑性机制,从而重新激活神经元集合。这里,我们评估了它们在睡眠期间巩固海马空间表征中的作用.我们记录了执行空间对象位置识别(OPR)记忆任务的大鼠的海马活动,在编码和检索期间,通过干预睡眠分开。成功的OPR检索与NREM持续时间相关,在此期间,皮质振荡的功率和密度以及神经元尖峰下降,表明网络兴奋性的全球下调。然而,编码特定空间位置的神经元(即,与非编码神经元相比,OPR期间的位置细胞)或对象与大脑振荡表现出更强的同步性,空间表示的稳定性与NREM持续时间成比例下降。我们的研究结果表明,NREM睡眠可能会促进海马集合的灵活重定位,可能有助于记忆巩固和适应新的空间环境。
    Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    系统神经科学正面临着越来越多的数据。蛋白质工程和显微镜的最新进展共同导致了神经科学的范式转变;使用荧光,我们现在可以通过行为动物的整个大脑来成像每个神经元的活动。即使在更大的生物中,我们可以同时记录的神经元数量随着时间呈指数增长。数据维数的这种增加正在遇到计算和数学方法的爆炸式增长,每个都使用不同的术语,不同的方法,和不同的数学概念。在这里,我们收集,组织,并解释了多种数据分析技术,或者可能是,应用于全脑成像,以幼体斑马鱼为例模型。我们从线性回归等方法开始,这些方法旨在检测两个变量之间的关系。接下来,我们通过网络科学和应用拓扑方法进步,它们专注于许多变量之间的关系模式。最后,我们强调了生成模型的潜力,这些模型可以提供关于布线规则和网络随时间进展的可测试假设,或疾病进展。虽然我们使用幼体斑马鱼成像的例子,这些方法适用于任何人口规模的神经网络建模,事实上,超越系统神经科学的应用。来自网络科学和应用拓扑的计算方法不仅限于幼体斑马鱼,甚至是系统神经科学,因此,我们最后讨论了如何将这些方法应用于整个生物科学的各种问题。
    Systems neuroscience is facing an ever-growing mountain of data. Recent advances in protein engineering and microscopy have together led to a paradigm shift in neuroscience; using fluorescence, we can now image the activity of every neuron through the whole brain of behaving animals. Even in larger organisms, the number of neurons that we can record simultaneously is increasing exponentially with time. This increase in the dimensionality of the data is being met with an explosion of computational and mathematical methods, each using disparate terminology, distinct approaches, and diverse mathematical concepts. Here we collect, organize, and explain multiple data analysis techniques that have been, or could be, applied to whole-brain imaging, using larval zebrafish as an example model. We begin with methods such as linear regression that are designed to detect relations between two variables. Next, we progress through network science and applied topological methods, which focus on the patterns of relations among many variables. Finally, we highlight the potential of generative models that could provide testable hypotheses on wiring rules and network progression through time, or disease progression. While we use examples of imaging from larval zebrafish, these approaches are suitable for any population-scale neural network modeling, and indeed, to applications beyond systems neuroscience. Computational approaches from network science and applied topology are not limited to larval zebrafish, or even to systems neuroscience, and we therefore conclude with a discussion of how such methods can be applied to diverse problems across the biological sciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们对生殖健康和不育等相关疾病的理解和管理,月经不调,和垂体疾病取决于了解控制催乳素分泌的复杂的性别特异性机制。在急性切片中使用离体实验,与体内钙成像(GRIN透镜技术)并行,我们发现多巴胺神经元抑制PRL分泌(TIDA),在体内和体外组织为功能网络。我们使用钙事件的持续时间和形成塑料经济网络的能力来定义网络效率指数(Ieff)。它确定了TIDA神经元在体内抑制PRL分泌的能力。两性的差异证明了TIDA神经元对生理变化的适应性。有助于网络的活跃神经元数量的变化解释了基础[PRL]血液分泌模式中的性二态性。神经元活动和网络组织的这些性别特异性差异有助于理解激素调节。
    Our understanding and management of reproductive health and related disorders such as infertility, menstrual irregularities, and pituitary disorders depend on understanding the intricate sex-specific mechanisms governing prolactin secretion. Using ex vivo experiments in acute slices, in parallel with in vivo calcium imaging (GRIN lens technology), we found that dopamine neurons inhibiting PRL secretion (TIDA), organize as functional networks both in and ex vivo. We defined an index of efficiency of networking (Ieff) using the duration of calcium events and the ability to form plastic economic networks. It determined TIDA neurons\' ability to inhibit PRL secretion in vivo. Ieff variations in both sexes demonstrated TIDA neurons\' adaptability to physiological changes. A variation in the number of active neurons contributing to the network explains the sexual dimorphism in basal [PRL]blood secretion patterns. These sex-specific differences in neuronal activity and network organization contribute to the understanding of hormone regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在早期发展中,主动睡眠是在被安静睡眠取代之前的主要睡眠状态。在老鼠身上,安静睡眠的发育增加伴随着出生后第12天(P12)左右皮质三角洲节律的突然出现(0.5-4Hz)。我们试图通过评估面旁区(PZ)活动的发育变化来解释皮质三角洲的出现,一种被认为调节成人安静睡眠的髓质结构。我们记录了P10和P12大鼠的PZ,并预测了在富含δ的皮质活动增加期间与年龄相关的神经活动增加。相反,在安静的睡眠中,我们发现了依赖睡眠的有节奏的尖峰活动,其中总的沉默阶段的中间阶段被锁定为局部的δ节奏。此外,PZ与皮质δ在P12处相干,但在P10处不相干。PZ三角洲也被锁相呼吸,提示腹侧延髓呼吸起搏器对PZ活动的睡眠依赖性调节。将主要嗅球与皮质断开连接并没有减少皮质三角洲,表明在这个年龄段呼吸对三角洲的影响不是通过鼻呼吸间接介导的。最后,我们观察到PZ中表达小清蛋白的末端在这些年龄增加,支持局部GABA能抑制在PZ的节律性中的作用。当皮质三角洲也出现时,在延髓中发现了三角洲节律性神经活动,这为脑干在调节睡眠和促进早期发育中的远程功能连接的作用提供了新的视角。
    In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ\'s rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem\'s role in regulating sleep and promoting long-range functional connectivity in early development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓损伤(SCI)后过度的神经炎症是神经修复过程中的主要障碍。尽管促炎巨噬细胞/小胶质细胞介导的神经炎症起着重要作用,引发神经炎症和加重因素的潜在机制尚不清楚.本研究确定了semaphorin3C(SEMA3C)在SCI后的免疫调节中的促炎作用。SEMA3C表达水平在损伤后7天(dpi)达到峰值并降低14dpi。体内和体外研究表明,巨噬细胞/小胶质细胞在局部微环境中表达SEMA3C,诱导神经炎症和促炎巨噬细胞/小胶质细胞的转化。机制实验表明RAGE/NF-κB是SEMA3C的下游靶标。抑制SEMA3C介导的RAGE信号传导显著抑制了促炎细胞因子的产生,SCI后不久巨噬细胞/小胶质细胞的反极化。此外,SEMA3C介导的RAGE信号传导的抑制表明SEMA3C/RAGE轴是保护轴突免受神经炎症的可行靶标。一起来看,我们的研究首次提供了SEMA3C通过自分泌机制在SCI中发挥免疫调节作用的实验证据.
    Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在生命早期,视觉皮层可塑性很高,但随着发展逐渐减少。这是由于Otx2驱动的皮质内抑制的成熟,使细胞外基质成分凝结成神经周网,主要是在小白蛋白阳性GABA能神经元周围。抑制因子元件1沉默转录(REST)表观遗传学控制大量神经元特异性基因的表达。我们证明,成年小鼠初级视觉皮层中REST的条件性敲除会在短期单眼剥夺后引起眼优势的转移,并在反向缝合后促进长期剥夺动物的视力恢复。这些现象与神经周的净密度降低和REST靶基因表达增加平行。但不是视同型蛋白Otx2在视觉皮层对侧剥夺的眼睛。这表明REST调节成人视皮层可塑性,是通过增强V1可塑性来恢复成人弱视视力的潜在治疗靶点。
    Visual cortical plasticity is high during early life, but gradually decreases with development. This is due to the Otx2-driven maturation of intracortical inhibition that parallels the condensation of extracellular matrix components into perineuronal nets mainly around parvalbumin-positive GABAergic neurons. Repressor Element 1 Silencing Transcription (REST) epigenetically controls the expression of a plethora of neuron-specific genes. We demonstrate that the conditional knockout of REST in the primary visual cortex of adult mice induces a shift of ocular dominance after short-term monocular deprivation and promotes the recovery of vision in long-term deprived animals after reverse suture. These phenomena paralleled a reduction of perineuronal net density and increased expression of REST target genes, but not of the homeoprotein Otx2 in the visual cortex contralateral to the deprived eye. This shows that REST regulates adult visual cortical plasticity and is a potential therapeutic target to restore vision in adult amblyopia by enhancing V1 plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    后顶叶皮层(PPC)集成了多感官和运动相关信息,用于生成和更新身体表征和运动计划。我们在猕猴中使用狂犬病病毒的逆行跨神经元转移与常规示踪剂相结合,以确定与手臂相关的头颅内侧顶内区域(MIP)的直接和突触途径,腹侧顶内区(LIPv),属于顶叶眼场,以及内侧上颞区(MSTl)的与追求相关的横向细分。我们发现这些区域通过丘脑从视神经束(NOT)和上丘(SC)的核接受主要的突触通路,主要是同侧。不是道路,最突出地瞄准MSTl,用于处理缓慢眼球运动的感官后果,而NOT是关键的感觉运动界面。它们可能导致追踪和光动力学系统的方向不对称。MSTl和LIPv接收来自SC可视层的前馈输入,它们是快速检测运动的潜在关联,知觉扫视抑制和视觉空间注意。MSTl是来自SC运动层和头部相关网状脊髓神经元的扫视和头部相关隔室的有效复制途径的靶标。它们是与MSTl视觉跟踪神经元中的眼睛和头部运动相关的视网膜外信号的潜在来源。LIPv和rostralMIP接收来自所有SC运动层的有效复制途径,提供在线的眼睛估计,头部和手臂的运动。我们的发现对于理解PPC在表示更新中的作用具有重要意义,用于在线运动指导的内部模型,眼手协调和视神经共济失调。
    The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号