Structural biology

结构生物学
  • 文章类型: Journal Article
    M2质子通道通过其稳定出芽病毒体颈部出现的高负高斯曲率(NGC)区域的能力,有助于成熟的流感病毒颗粒从宿主质膜中退出。通道是同源四聚体,含有面向细胞质的两亲性螺旋(AH),这是NGC生成所必需和足够的;但是,包含跨膜螺旋的构建体,这有助于四聚化,表现出增强的曲率生成。在这里,我们使用全原子分子动力学(MD)模拟来探索脂质双层中M2通道的构象动力学,揭示AH是动态的,迅速打破了在大多数结构中观察到的4重对称性。接下来,我们用4倍和2倍对称构象的蛋白质进行了MD模拟,以确定对膜形状的影响。虽然每种模式都不同,所有的构型都会引起外叶明显的弯曲,而反过来,内部小叶在AH周围显示出最小的曲率和显着的脂质倾斜。然后提取蛋白质-膜界面处的MD生成的谱,并将其用作连续弹性膜模型中的边界条件,以计算嵌入出芽病毒特征的不同膜表面中的每种构象的膜弯曲能。计算表明,所有三个M2构象都稳定在向内出芽,凹球形帽,向外出芽不稳定,凸球形帽,后者让人想起一种正在萌芽的病毒。在NGC表面中,C2破坏的对称构象之一通过4kT稳定,最小能量构象发生在对应于33nm半径的曲率处。总的来说,我们的工作提供了对M2通道的曲率感应能力的原子见解,以及新生病毒颗粒中的富集如何取决于蛋白质形状和膜几何形状。
    The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the 4-fold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in 4-fold and 2-fold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein-membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类细胞核复杂的结构组织是细胞功能和基因调控的基础。实验技术的最新进展,包括高通量测序和显微镜,为核组织提供了宝贵的见解。计算模型通过重建高分辨率结构集合和揭示组织原理,在解释实验观察方面发挥了重要作用。然而,缺乏标准化的建模工具对进一步进行核调查提出了挑战。我们介绍了OpenNucleome-一种开源软件,用于进行GPU加速的人核分子动力学模拟。OpenNucleome以100KB的分辨率提供基于粒子的染色体表示,包括核层,核仁,和斑点。该软件提供了高度精确的核体系结构结构模型,提供凝析油形成的动态模拟手段,聚变,以及非均衡效应的探索。我们应用OpenNucleome来揭示驱动“固定点”出现的机制,这些“固定点”在核标志基因组基因座中稳固地锚定在特定核体附近,以实现功能目的。即使在单个细胞内染色体径向位置和细胞核形状的显着波动中,这种锚定仍保持弹性。我们的发现为阐明基因组功能的核分区模型提供了支持。我们预计OpenNucleome将成为核调查的宝贵工具,简化机械探索,增强实验观察的解释。
    The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of \'fixed points\' within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属离子依赖性核酸酶在细胞防御和生物技术应用中起着至关重要的作用。时间分辨晶体学已经解决了金属离子依赖性DNA水解和合成的催化细节,揭示多种金属离子在催化过程中的重要作用。组氨酸-金属(His-Me)超家族核酸酶以结合一个二价金属离子并需要保守的组氨酸来促进催化而闻名。许多他我家族的核酸酶,包括归巢核酸内切酶和Cas9核酸酶,已适用于生物技术和生物医学应用。然而,目前尚不清楚His-Me核酸酶中的单一金属离子是如何,连同组氨酸,促进水去质子化,亲核攻击,和磷酸二酯键断裂。通过以His-MeI-PpoI核酸酶为模型系统观察晶体中DNA的水解,我们证明了在催化过程中只需要一个二价金属离子。此外,我们发现了亲核水的几种可能的去质子化途径。有趣的是,在催化过程中,单个金属离子的结合和水去质子化是一致的。我们的结果揭示了His-Me核酸酶的催化细节,这与多金属离子依赖性DNA聚合酶和核酸酶不同。
    Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    识别和表征大分子结构中的金属结合位点(MBS)对于阐明其生物学功能至关重要。CheckMyMetal(CMM)是一种基于网络的工具,可促进通过X射线晶体学和低温电子显微镜(cryo-EM)确定的结构中MBS的交互式验证。CMM的最新更新显着增强了其有效处理从低温EM结构分析生成的大型数据集的能力。在这项研究中,我们解决了在X射线和低温EM结构中验证MBS所固有的各种挑战。具体来说,我们通过考虑结构生物学中持续的可重复性挑战和良好注释的关键重要性,来研究与准确识别金属和建模其协调环境相关的困难。高质量的实验数据。CMM采用了根植于共价键理论的复杂规则框架进行MBS验证。我们探索CMM验证参数如何与大分子及其复合物的实验衍生结构的分辨率相关。此外,我们通过分析代表性的低温电磁结构来展示三坐标测量机的实用性。通过对实验数据的全面检验,我们展示了CMM推进MBS表征和识别金属误分配的潜在实例的能力。
    Identifying and characterizing metal-binding sites (MBS) within macromolecular structures is imperative for elucidating their biological functions. CheckMyMetal (CMM) is a web based tool that facilitates the interactive validation of MBS in structures determined through X-ray crystallography and cryo-electron microscopy (cryo-EM). Recent updates to CMM have significantly enhanced its capability to efficiently handle large datasets generated from cryo-EM structural analyses. In this study, we address various challenges inherent in validating MBS within both X-ray and cryo-EM structures. Specifically, we examine the difficulties associated with accurately identifying metals and modeling their coordination environments by considering the ongoing reproducibility challenges in structural biology and the critical importance of well annotated, high-quality experimental data. CMM employs a sophisticated framework of rules rooted in the valence bond theory for MBS validation. We explore how CMM validation parameters correlate with the resolution of experimentally derived structures of macromolecules and their complexes. Additionally, we showcase the practical utility of CMM by analyzing a representative cryo-EM structure. Through a comprehensive examination of experimental data, we demonstrate the capability of CMM to advance MBS characterization and identify potential instances of metal misassignment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质,作为生理活动的主要执行者,是疾病诊断和治疗的关键因素。研究它们的结构,功能,和相互作用对于更好地了解疾病机制和潜在的治疗方法至关重要。DeepMind的AlphaFold2,一种深度学习蛋白质结构预测模型,已经证明非常准确,它广泛应用于诊断研究的各个方面,比如疾病生物标志物的研究,微生物致病性,抗原-抗体结构,和错义突变。因此,AlphaFold2是一种特殊的工具,可以将基础蛋白质研究与疾病诊断的突破联系起来。诊断策略的发展,以及新型治疗方法的设计和精准医学的增强。这篇综述概述了建筑,亮点,和AlphaFold2的局限性,特别强调其在免疫学等学科的诊断研究中的应用,生物化学,分子生物学,和微生物学。
    Proteins, as the primary executors of physiological activity, serve as a key factor in disease diagnosis and treatment. Research into their structures, functions, and interactions is essential to better understand disease mechanisms and potential therapies. DeepMind\'s AlphaFold2, a deep-learning protein structure prediction model, has proven to be remarkably accurate, and it is widely employed in various aspects of diagnostic research, such as the study of disease biomarkers, microorganism pathogenicity, antigen-antibody structures, and missense mutations. Thus, AlphaFold2 serves as an exceptional tool to bridge fundamental protein research with breakthroughs in disease diagnosis, developments in diagnostic strategies, and the design of novel therapeutic approaches and enhancements in precision medicine. This review outlines the architecture, highlights, and limitations of AlphaFold2, placing particular emphasis on its applications within diagnostic research grounded in disciplines such as immunology, biochemistry, molecular biology, and microbiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从AlphaFold最初发布两年后,我们已经看到它作为一种结构预测工具被广泛采用。这里,我们讨论了一些基于AlphaFold的最新作品,特别关注其在结构生物学社区中的使用。这包括加速结构确定本身的用例,实现新的计算研究,并构建新的工具和工作流程。我们还研究了AlphaFold正在进行的验证,因为它的预测继续与大量实验结构进行比较,以进一步描绘模型的能力和局限性。
    Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows. We also look at the ongoing validation of AlphaFold, as its predictions continue to be compared against large numbers of experimental structures to further delineate the model\'s capabilities and limitations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖胺聚糖透明质酸(HA)是一种普遍存在的透明质酸,非硫酸化多糖通过其与HA结合蛋白(HABP)的相互作用介导不同的生物学作用。大多数HABP属于Link模块超家族,包括主要的HA受体,CD44和分泌蛋白TSG-6,其催化重链(HC)从α-抑制剂(IαI)到HA的共价转移。已经确定了CD44(HABD_CD44)和TSG-6(Link_TSG6)的HA结合结构域(HABD)的结构,并广泛表征了它们与HA的相互作用。结合的机制是不同的,Link_TSG6主要通过离子和CH-π相互作用与HA相互作用,而HABD_CD44仅通过氢键和范德华力结合。在这里,我们利用这些差异来产生HA寡糖,在它们的还原端进行了化学修饰,与这些靶HABP特异性和差异性结合。用2-或3-氨基苯甲酸或2-氨基-4-甲氧基苯甲酸(HA6-2AA,HA6-3AA,HA6-2A4MBA,分别)与未修饰的HA6AN相比,Link_TSG6的亲和力增加。这些修饰不增加对CD44_HABD的亲和力。将HA6-2AA模型(源自HA4-2AA的溶液动态3D结构)对接到Link_TSG6结构中,提供2AA-羧基与精氨酸-81形成盐桥的证据。这些建模结果为HA寡糖的第二系列化学修饰提供了信息,再次显示与两种蛋白质的差异结合。发现对HA4和HA6的几种修饰将寡糖转化为HC转移的底物,而未修饰的HA4和HA6则不是。这项研究产生了有价值的研究工具,以进一步了解HA生物学。
    The glycosaminoglycan hyaluronan (HA) is a ubiquitous, non-sulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of Heavy Chains (HC) from inter-α-inhibitor (IαI) onto HA. The structures of the HA-binding domains (HABD) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid or 2-amino-4-methoxybenzoic acid (HA6-2AA, HA6-3AA, HA6-2A4MBA, respectively) had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a 2nd series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for HC-transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    反式激活反应(TAR)RNA结合蛋白(TRBP)已成为RNA干扰途径中的关键参与者,其中它结合不同的前微小RNA(miRNA)和小干扰RNA(siRNA),每个都在顺序和/或结构上变化。我们假设TRBP表现出动态适应性以适应靶RNA结构的异质性。因此,确定内在和RNA诱导的蛋白质动力学在RNA识别和结合中的作用至关重要。我们先前已经阐明了内在和RNA诱导的构象交换在TRBP的双链RNA结合域1(dsRBD1)在形状依赖性RNA识别中的作用。当前的研究深入研究了TRBP-dsRBD2的内在和RNA诱导的构象动力学,然后将其与先前进行的dsRBD1研究进行了比较。值得注意的是,由于关键残基的存在和结构可塑性,这两个结构域对12bp的dsRNA表现出不同的结合亲和力。此外,我们报道,与dsRBD1相比,dsRBD2描述了受限的构象可塑性。虽然,在RNA的存在下,dsRBD2在指定的RNA结合区和其他残基内经历诱导的构象交换,与dsRBD1中观察到的运动相比,运动的幅度仍然适中。我们提出了TRBP的两个串联域的动力学驱动模型,证实了他们对dsRNA识别和结合的多功能性的贡献。
    Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: News
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低温电子显微镜(cryo-EM)已成为确定复杂生物分子结构的强大方法。这些系统动力学的准确表征,然而,仍然是一个挑战。为了解决这个问题,我们介绍冷冻组,一种将贝叶斯重新加权应用于从分子动力学模拟得出的构象集合的方法,以改善它们与低温EM数据的一致性,从而可以提取动力学信息。我们说明了使用冷冻ENsemble来确定共翻译伴侣触发因子(TF)的核糖体结合状态的动力学。我们还表明,冷冻组可以帮助解释低分辨率,低温EM图的嘈杂或下落不明的区域。值得注意的是,我们能够将冷冻EM图谱的下落不明部分与另一种蛋白质(甲硫氨酸氨基肽酶,或MetAP),而不是TF的动力学,并对其TF绑定状态进行建模。基于这些结果,我们预计CryoENsemble将用于包含动态组件的生物分子系统的具有挑战性的异质低温EM图。
    Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for the determination of structures of complex biological molecules. The accurate characterisation of the dynamics of such systems, however, remains a challenge. To address this problem, we introduce cryoENsemble, a method that applies Bayesian reweighting to conformational ensembles derived from molecular dynamics simulations to improve their agreement with cryo-EM data, thus enabling the extraction of dynamics information. We illustrate the use of cryoENsemble to determine the dynamics of the ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted regions of cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM map to the presence of another protein (methionine aminopeptidase, or MetAP), rather than to the dynamics of TF, and model its TF-bound state. Based on these results, we anticipate that cryoENsemble will find use for challenging heterogeneous cryo-EM maps for biomolecular systems encompassing dynamic components.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号