Strand displacement

钢绞线位移
  • 文章类型: Journal Article
    精确设计的双色生物传感器已实现对活细胞和细胞裂解物中胸苷激酶1(TK1)mRNA的视觉评估。寡核苷酸探针是通过将靶标的反义链和两个识别序列杂交来构建的,其中FAM作为供体和TAMRA作为受体。一旦与目标互动,两条识别线被替换,然后反义互补序列形成更稳定的双链结构。由于两种染料之间的空间距离增加,FRET减弱,导致FAM荧光的快速恢复和TAMRA荧光的减少。肉眼可以观察到从橙色到绿色的明显颜色反应,基于光谱仪和智能手机的检测限(LOD)为0.38nM和5.22nM,分别。拟议的比率方法在可视化TK1表达以进行可靠的核酸生物标志物分析的能力方面超越了以前的报道。这可能会建立一种通过链置换进行比率生物传感的一般策略。
    A precisely designed dual-color biosensor has realized a visual assessment of thymidine kinase 1 (TK1) mRNA in both living cells and cell lysates. The oligonucleotide probe is constructed by hybridizing the antisense strand of the target and two recognition sequences, in which FAM serves as the donor and TAMRA as the acceptor. Once interacting with the target, two recognition strands are replaced, and then the antisense complementary sequence forms a more stable double-stranded structure. Due to the increasing spatial distance between two dyes, the FRET is attenuated, leading to a rapid recovery of FAM fluorescence and a reduction of TAMRA fluorescence. A discernible color response from orange to green could be observed by the naked eye, with a limit of detection (LOD) of 0.38 nM and 5.22 nM for spectrometer- and smartphone-based assays, respectively. The proposed ratiometric method transcends previous reports in its capacities in visualizing TK1 expression toward reliable nucleic acid biomarker analysis, which might establish a general strategy for ratiometric biosensing via strand displacement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    核糖开关是配体反应性基因调控RNA元件,在维持细胞稳态中发挥关键作用。理解如何控制核糖开关灵敏度对于理解如何在具有不同灵敏度需求的各种环境中部署高度保守的适体结构域至关重要。在这里,我们发现了RNA折叠动力学控制细胞中核糖开关敏感性的新角色。通过研究贝氏梭菌pflZTP核糖开关,我们确定了改变表达平台序列和结构以减缓RNA折叠的多种机制途径,所有这些都增强了核糖开关的灵敏度。将这些方法应用于具有不同适体结构的核糖开关,这些结构可以用ON和OFF逻辑调节转录和翻译,这证明了我们发现的普遍性。表明任何在动力学状态下操作的核糖开关都可以通过减慢表达平台折叠来敏感。这些开关的最敏感形式与平衡适体:配体解离常数的比较表明对动力学RNA开关可实现的灵敏度的限制。我们的结果增加了不断增长的知识和方法,可用于合理地编程用于生物技术应用的共转录RNA折叠,并提出了一般的RNA折叠原理,用于理解其他生物学领域的动态RNA系统。
    Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:DNA纳米技术的出现使在核酸纳米器件的精确控制下对多种仿生耗散行为进行了系统设计。然而,与在健壮的生命系统中观察到的耗散相比,高度期望增强人工DNA耗散的抗干扰以承受扰动并促进复杂生物环境内的修复。
    结果:在这项研究中,我们引入了战略性设计的“垃圾桶”,以促进对干扰的动力学控制,将均匀解决方案中单个组件的随机绑定转换为竞争性绑定过程。这种方法有效地消除了不正确的结合和系统干扰的积累,同时确保了从响应到沉默的能量波动的一致模式。值得注意的是,即使存在只有一个基数的众多干扰,我们通过多个周期成功地实现了完整的系统复位,有效地将能量水平恢复到最低。
    结论:系统能够在不规则干扰条件下稳定运行,没有任何不利影响,高丰度干扰,甚至包括DNA和RNA串扰在内的多重干扰。这项工作不仅为构建强大的DNA耗散系统提供了有效的范例,而且极大地拓宽了DNA耗散在高精度分子识别和复杂生物反应网络中的应用潜力。
    BACKGROUND: The emergence of DNA nanotechnology has enabled the systematic design of diverse bionic dissipative behaviors under the precise control of nucleic acid nanodevices. Nevertheless, when compared to the dissipation observed in robust living systems, it is highly desirable to enhance the anti-interference for artificial DNA dissipation to withstand perturbations and facilitate repairs within the complex biological environments.
    RESULTS: In this study, we introduce strategically designed \"trash cans\" to facilitate kinetic control over interferences, transforming the stochastic binding of individual components within a homogeneous solution into a competitive binding process. This approach effectively eliminates incorrect binding and the accumulation of systemic interferences while ensuring a consistent pattern of energy fluctuation from response to silence. Remarkably, even in the presence of numerous interferences differing by only one base, we successfully achieve complete system reset through multiple cycles, effectively restoring the energy level to a minimum.
    CONCLUSIONS: The system was able to operate stably without any adverse effect under conditions of irregular interference, high-abundance interference, and even multiplex interferences including DNA and RNA crosstalk. This work not only provides an effective paradigm for constructing robust DNA dissipation systems but also greatly broadens the potential of DNA dissipation for applications in high-precision molecular recognition and complex biological reaction networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成具有精确控制的构型的人造蛋白质复合物的方法的开发将实现多种生物和医学应用。使用DNA连接蛋白质提供了用其他方法难以实现的可编程性。这里,我们使用DNA折纸作为“汇编器”,使用一系列寡核苷酸杂交和置换操作来指导蛋白质-DNA缀合物的连接。我们构建了几种异构蛋白质纳米结构,包括二聚体,两种类型的三聚体结构,和三种类型的四聚体组件,通过使用由DNA柄修饰的蛋白质三聚体组成的C3对称结构单元,在DNA折纸平台上。我们的方法扩展了基于蛋白质的纳米结构的精确组装的范围,并将能够配制具有化学计量和几何控制的功能性蛋白质复合物。
    The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an \"assembler\" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管由合成聚合物制成的水凝胶对其稳定性和机械性能提供了高度的控制,它们的生物医学活动通常是有限的。相比之下,生物聚合物已经进化了数十亿年,将广泛的功能整合到一个单一的设计中。因此,生物聚合物水凝胶可以表现出非凡的能力,如调节行为,选择性阻隔性能,或抗菌作用。尽管如此,尽管它们广泛用于许多生物医学应用,实现对宏观生物聚合物网络的物理性质的细致控制仍然是一个挑战。这里,我们提出了一个宏观的,具有可调粘弹性特性的DNA交联的粘蛋白水凝胶,可响应两种类型的触发因素:温度变化和DNA置换链。正如本体流变学和单颗粒示踪所证实的那样,可以打开控制水凝胶稳定性的杂交碱基对,从而允许对水凝胶刚度的精确控制,并且甚至实现完全的凝胶到溶胶的转变。由于这些DNA交联的粘蛋白水凝胶具有可调的机械性能,并且可以根据需要分解,它们不仅可以被考虑用于受控的货物释放,还可以作为智能生物医学材料在组织工程和伤口愈合等应用中的发展的榜样。本文受版权保护。保留所有权利。
    Whereas hydrogels created from synthetic polymers offer a high level of control over their stability and mechanical properties, their biomedical activity is typically limited. In contrast, biopolymers have evolved over billions of years to integrate a broad range of functionalities into a single design. Thus, biopolymeric hydrogels can show remarkable capabilities such as regulatory behavior, selective barrier properties, or antimicrobial effects. Still, despite their widespread use in numerous biomedical applications, achieving a meticulous control over the physical properties of macroscopic biopolymeric networks remains a challenge. Here, a macroscopic, DNA-crosslinked mucin hydrogel with tunable viscoelastic properties that responds to two types of triggers: temperature alterations and DNA displacement strands, is presented. As confirmed with bulk rheology and single particle tracking, the hybridized base pairs governing the stability of the hydrogel can be opened, thus allowing for a precise control over the hydrogel stiffness and even enabling a full gel-to-sol transition. As those DNA-crosslinked mucin hydrogels possess tunable mechanical properties and can be disintegrated on demand, they can not only be considered for controlled cargo release but may also serve as a role model for the development of smart biomedical materials in applications such as tissue engineering and wound healing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Toehold介导的DNA链置换(TMSD)是用于控制基于DNA的分子反应和设备的强大工具。然而,TMSD反应的缓慢动力学常常限制其效率和实际应用。受天然DNA操作酶的化学结构的启发(例如,解旋酶),我们设计了富含赖氨酸的肽与基于DNA的系统自组装。我们的方法允许加速TMSD反应,即使在多次流离失所事件中,提高其整体效率和效用。我们发现加速度取决于肽的序列,长度,和浓度以及DNA立足点结构域的长度。分子动力学模拟显示,肽促进双链靶标和单链入侵者之间的立足点结合,从而促进股线移位。此外,我们将我们的方法整合到模拟辣根过氧化物酶的DNA酶中,启用动态调节酶功能的开和关。我们预计,链置换反应的加速和酶活性的调节在可编程的基于DNA的纳米设备设计中提供了增强的功能和控制。
    Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (e.g., helicase), we designed lysine-rich peptides to self-assemble with DNA-based systems. Our approach allows for accelerating the TMSD reactions, even during multiple displacement events, enhancing their overall efficiency and utility. We found that the acceleration is dependent on the peptide\'s sequence, length, and concentration as well as the length of the DNA toehold domain. Molecular dynamics simulations revealed that the peptides promote toehold binding between the double-stranded target and the single-stranded invader, thereby facilitating strand displacement. Furthermore, we integrated our approach into a horseradish peroxidase-mimicking DNAzyme, enabling the dynamic modulation of enzymatic functions on and off. We anticipate that the established acceleration of strand displacement reactions and the modulation of enzymatic activities offer enhanced functionality and control in the design of programmable DNA-based nanodevices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    荧光DNA检测在疾病诊断中很有前途,环境监测,和药物筛选,包括异质和同质测定类型。然而,非均相的分析遭受繁琐的洗涤步骤和缓慢的反应动力学,而同质测定需要精心设计的荧光团对来调制信号关/开。在这里,我们使用双水相系统(ATPS)开发了一种经济有效且高效的无猝灭剂荧光DNA测定法。使用链置换反应,我们表明,类似的传感性能可以在更低的成本实现。此外,ATPS中独特的拥挤环境将链置换反应加速了六倍,并将DNA扩增时间从120分钟缩短到30分钟。我们的测定证明了在血清环境中的强大传感和从细胞中提取的miRNA的成功检测。这种创新的测定格式具有在各种应用中开发具有异构读出和快速反应动力学的生物传感器的潜力。
    Fluorescent DNA assays are promising in disease diagnosis, environmental monitoring, and drug screening, encompassing both heterogeneous and homogeneous assay types. Nevertheless, heterogeneous assays suffer from tedious washing steps and slow reaction kinetics, whereas homogenous assays require well-designed fluorophore pairs to modulate signal off/on. Herein, we developed a cost-effective and efficient quencher-free fluorescent DNA assay using an aqueous two-phase system (ATPS). Using a strand-displacement reaction, we showed that similar sensing performance could be achieved at a much lower cost. Furthermore, the unique crowding environment in ATPS accelerated strand-displacement reactions by up to six-fold and reduced DNA amplification time from 120 min to 30 min. Our assay demonstrated robust sensing in serum environments and successful detection of miRNA extracted from cells. This innovative assay format has the potential for biosensor development with both heterogeneous readout and rapid reaction kinetics in various applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    RNA靶向CRISPR核酸酶Cas13已成为从核酸检测到转录组工程和RNA成像1-6的应用的强大工具。Cas13通过CRISPRRNA(crRNA)与靶RNA中的互补单链RNA(ssRNA)前间隔子的杂交而被激活1,7。虽然Cas13在体外不被双链RNA(dsRNA)激活,矛盾的是,它在绝大多数RNA高度结构化的环境中证明了强大的RNA靶向2,8。了解Cas13的结合和激活机制将是提高其检测和干扰RNA能力的关键;然而,Cas13结合结构化RNA的机制仍然未知9.这里,我们使用大规模多重筛选系统探测LwaCas13a响应RNA结构扰动的激活机制。我们发现,二级结构有两种不同的序列无关模式影响Cas13活性:前间隔区的结构与crRNA竞争,可以通过链置换机制被破坏,而在区域3\'到原型间隔区的结构具有变构抑制作用。我们利用链置换过程的动力学性质来改进基于Cas13的RNA检测,将错配辨别能力提高多达50倍,并能够在低(<1%)等位基因频率下鉴定序列不可知的突变。我们的工作为基于CRISPR的核酸检测树立了新的标准,并将实现智能和二级结构指导的靶标选择,同时还扩大了可用于Cas13靶向的RNA范围。
    The RNA-targeting CRISPR nuclease Cas13 has emerged as a powerful tool for applications ranging from nucleic acid detection to transcriptome engineering and RNA imaging1-6. Cas13 is activated by the hybridization of a CRISPR RNA (crRNA) to a complementary single-stranded RNA (ssRNA) protospacer in a target RNA1,7. Though Cas13 is not activated by double-stranded RNA (dsRNA) in vitro, it paradoxically demonstrates robust RNA targeting in environments where the vast majority of RNAs are highly structured2,8. Understanding Cas13\'s mechanism of binding and activation will be key to improving its ability to detect and perturb RNA; however, the mechanism by which Cas13 binds structured RNAs remains unknown9. Here, we systematically probe the mechanism of LwaCas13a activation in response to RNA structure perturbations using a massively multiplexed screen. We find that there are two distinct sequence-independent modes by which secondary structure affects Cas13 activity: structure in the protospacer region competes with the crRNA and can be disrupted via a strand-displacement mechanism, while structure in the region 3\' to the protospacer has an allosteric inhibitory effect. We leverage the kinetic nature of the strand displacement process to improve Cas13-based RNA detection, enhancing mismatch discrimination by up to 50-fold and enabling sequence-agnostic mutation identification at low (<1%) allele frequencies. Our work sets a new standard for CRISPR-based nucleic acid detection and will enable intelligent and secondary-structure-guided target selection while also expanding the range of RNAs available for targeting with Cas13.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    食源性细菌威胁着人类的健康。毛细管电泳(CE)是测定细菌的有力分离手段。直接分离细菌的缺点是分辨率低,通道吸附,和细菌聚集。在这项工作中,开发了一种核酸链置换方法,通过CE间接分离细菌。DNA复合物,由探针和适体组成,混合了三种细菌金黄色葡萄球菌,大肠杆菌,还有铜绿假单胞菌.适体可以与细菌特异性结合并释放探针。通过探针的分离,细菌可以通过CE间接确定。该方法避免了直接分离细菌的不足。在优化条件下,通过高速CE和激光诱导荧光检测,可以在2.5min内分离和检测细菌的三种探针。细菌的检出限在4.20×106至1.75×107CFU/mL的范围内。最后,将所开发的方法用于研究共存细菌的拮抗作用,以揭示它们之间的关系。此外,三种中药的抑菌效率,黄连,五味子,和金银花,也用这种方法进行了研究。
    Foodborne bacteria threaten human\'s health. Capillary electrophoresis (CE) is a powerful separation means for the determination of bacteria. Direct separation of bacteria suffers from the shortages of low resolution, channel adsorption, and bacterial aggregation. In this work, a method of nucleic acid strand displacement was developed to indirect separate the bacteria by CE. DNA complexes, consisting of probes and aptamers, were mixed with the three bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The aptamers could specifically bond with bacteria and release the probes. Through the separation of the probes, the bacteria could be indirectly determined by CE. This method avoided the shortages of direct separation of bacteria. Under the optimized conditions, the three probes for the bacteria could be separated and detected within 2.5 min by high-speed CE with laser-induced fluorescence detection. The limits of detection for the bacteria were in the range 4.20 × 106 to 1.75 × 107  CFU/mL. Finally, the developed method was applied on the study of antagonism of the coexistent bacteria to reveal the relationship between them. Furthermore, the efficiency of bacteriostasis of three traditional Chinese medicines, Coptis chinensis, Schisandra chinensis, and honeysuckle, was also studied by this method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA聚合酶是使用DNA作为模板合成DNA的酶的超家族。它们对于核酸代谢以及DNA复制和修复是必需的。现代生物技术和分子诊断在分析核酸时严重依赖于DNA聚合酶。在各种发现的DNA聚合酶中,Bst聚合酶,来自嗜热脂肪土芽孢杆菌的DNA聚合酶I的大片段,是最常用的一种,但不如Taq聚合酶研究得很好。Bst聚合酶在合成过程中取代上游DNA链的能力,加上其适度的热稳定性,为几种等温DNA扩增方法提供了基础,包括灯,WGA,RCA,和许多其他人。Bst聚合酶是定义基于等温扩增的诊断测试系统的鲁棒性和分析特性的关键组件之一。这里,我们概述了Bst聚合酶的生化和结构特征,并提供了有关其突变类似物的信息。
    DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号