Sonogenetics

  • 文章类型: Journal Article
    低强度聚焦超声代表了突破性的医学进步,以其非侵入性特征为特征,安全,精度,和广泛的神经调节能力。这项技术通过机制运作,例如,声辐射力,空化,和热效应。值得注意的是,随着医疗技术的发展,超声神经调制已逐步应用于中枢神经系统疾病的治疗,尤其是中风。此外,超声遗传学和纳米技术等新兴研究领域显示出有希望的潜力。尽管低强度聚焦超声具有优势,但超声神经调节的精确生物物理机制仍需进一步探索。这篇综述讨论了低强度聚焦超声在神经调节方面的最新发展。涵盖了当前效用的基本原理,以及阻碍其进一步发展和更广泛采用这种有希望的非侵入性疗法的挑战。
    Low-intensity focused ultrasound represents groundbreaking medical advancements, characterized by its noninvasive feature, safety, precision, and broad neuromodulatory capabilities. This technology operates through mechanisms, for example, acoustic radiation force, cavitation, and thermal effects. Notably, with the evolution of medical technology, ultrasound neuromodulation has been gradually applied in treating central nervous system diseases, especially stroke. Furthermore, burgeoning research areas such as sonogenetics and nanotechnology show promising potential. Despite the benefit of low-intensity focused ultrasound the precise biophysical mechanism of ultrasound neuromodulation still need further exploration. This review discusses the recent and ongoing developments of low-intensity focused ultrasound for neurological regulation, covering the underlying rationale to current utility and the challenges that impede its further development and broader adoption of this promising alternative to noninvasive therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    气体囊泡(GV)是在各种水生细菌中发现的大型圆柱形充气蛋白质组件,使其适应浮力。GV已经被用作超声对比剂。这里,我们研究了来自巨大芽孢杆菌的GV,旨在最大程度地减少GV基因簇中附件Gvps的数量,并证明GV作为超声施加的声辐射力的增强剂。三(GvpR,GvpT,和GvpU)发现簇中的11个基因对于功能性GV形成是可有可无的,它们的遗漏导致了较窄的GV。最近确定的GV结构中缺少两种必需蛋白GvpJ和GvpN,但在这项研究中,GvpJ被发现与GV的圆柱形部分紧密结合。此外,观察到GvpN的N端在成熟GV的形成中起重要作用。通过整合素将鱼腥草的工程化GvpC与HEK293细胞结合,增强了超声传递的声力,并导致Ca2流入细胞的增加。与合成的Ca2+依赖性信号通路GV偶联有效地通过超声增强细胞刺激,这扩大了非侵入性超声遗传学细胞刺激的潜力。
    Gas vesicles (GVs) are large cylindrical gas-filled protein assemblies found in diverse aquatic bacteria that enable their adaptation of buoyancy. GVs have already been used as ultrasound contrasting agents. Here, we investigate GVs derived from Bacillus megaterium, aiming to minimize the number of accessory Gvps within the GV gene cluster and demonstrate the use of GVs as enhancers of acoustic radiation force administered by ultrasound. Three (GvpR, GvpT, and GvpU) out of 11 genes in the cluster were found to be dispensable for functional GV formation, and their omission resulted in narrower GVs. Two essential proteins GvpJ and GvpN were absent from recently determined GV structures, but GvpJ was nevertheless found to be tightly bound to the cylindrical part of GVs in this study. Additionally, the N-terminus of GvpN was observed to play an important role in the formation of mature GVs. The binding of engineered GvpC fromAnabaena flos-aquae to HEK293 cells via integrins enhanced the acoustic force delivered by ultrasound and resulted in an increased Ca2+ influx into cells. Coupling with a synthetic Ca2+-dependent signaling pathway GVs efficiently enhanced cell stimulation by ultrasound, which expands the potentials of noninvasive sonogenetics cell stimulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物医学研究的最新进展强调了非侵入性细胞操作技术的重要性。声遗传学,一种利用基因工程在靶细胞中产生超声敏感蛋白的方法,随着光遗传学越来越突出,电遗传学,和磁遗传学。用超声波刺激后,这些蛋白质引发细胞活动和功能的级联反应。与传统的超声模式不同,声遗传学提供了增强的空间选择性,提高疾病治疗的精度和安全性。这项技术在广泛的临床研究和治疗应用中拓宽了非手术干预的范围,包括神经调节,肿瘤治疗,干细胞疗法,和超越。尽管目前的文献主要强调超声神经调节,这篇综述提供了对超声遗传学的全面探索。我们讨论超声特性,超声遗传学中使用的特定超声敏感蛋白,以及该技术在管理神经系统疾病等疾病方面的潜力,癌症,和眼科疾病,和干细胞疗法。我们的目标是激发在这个有前途的领域进一步研究的新观点。
    Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique\'s potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    推进我们对脑功能的理解和开发神经系统疾病的治疗方法取决于在没有侵入性技术的情况下调节特定大脑区域的神经元群的能力。这里,我们引入艾里光束全息超声遗传学(AhSonogenetics)作为无植入物,细胞类型特异性,空间精确,和灵活的神经调节方法在自由移动的小鼠。AhSonogenetics利用使用3D打印的Airy光束全息超表面制造的可穿戴超声设备。这些装置旨在操纵基因工程神经元表达超声敏感离子通道,能够精确调节特定的神经元群体。通过超声频率调谐动态控制艾里波束的焦点,声遗传学能够调节纹状体特定亚区内的神经元群体。AhSongenetics的一个显着特征是其能够灵活地刺激单只小鼠的左纹状体或右纹状体。这种灵活性是通过简单地切换可穿戴超声设备中的声学超表面来实现的,消除了对多种植入物或干预措施的需要。AhSonogentocs还通过纤维光度法与体内钙记录无缝集成,展示其与光学模态的兼容性没有串扰。此外,声遗传学可以产生双侧刺激的双病灶,并减轻帕金森病小鼠的运动缺陷。这一进步意义重大,因为许多神经系统疾病,包括帕金森病,涉及多个大脑区域的功能障碍。通过实现精确和灵活的细胞类型特异性神经调节,而无需侵入性程序,AhSongenetics为研究完整的神经回路提供了强大的工具,并为神经系统疾病提供了有希望的干预措施。
    Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson\'s disease mice. This advancement is significant since many neurological disorders, including Parkinson\'s disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚合物机械化学利用机械力来激活大分子中的潜在官能团,并广泛依赖于超声处理技术。到目前为止,频率和功率强度的基本限制已经禁止了聚合物机械化学原理在生物医学环境中的应用。虽然医学超声是临床上确定的模式。这里,提出了一种通用的多核苷酸框架,允许结合和释放治疗性寡核苷酸,基于DNA和RNA的,作为生物相容性医学成像超声的货物。结果表明,高摩尔质量,胶体组装,和独特的机械化学机制使力诱导的货物释放和随后的体外和体内生物学功能的激活成为可能。因此,我们介绍了一个由机械力引导的生物问题和治疗发展的探索平台。本文受版权保护。保留所有权利。
    Polymer mechanochemistry utilizes mechanical force to activate latent functionalities in macromolecules and widely relies on ultrasonication techniques. Fundamental constraints of frequency and power intensity have prohibited the application of the polymer mechanochemistry principles in a biomedical context up to now, although medical ultrasound is a clinically established modality. Here, a universal polynucleotide framework is presented that allows the binding and release of therapeutic oligonucleotides, both DNA- and RNA-based, as cargo by biocompatible medical imaging ultrasound. It is shown that the high molar mass, colloidal assembly, and a distinct mechanochemical mechanism enable the force-induced release of cargo and subsequent activation of biological function in vitro and in vivo. Thereby, this work introduces a platform for the exploration of biological questions and therapeutics development steered by mechanical force.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于细菌的疗法是癌症治疗的有力策略,然而,由于缺乏可调节的遗传开关来安全地调节治疗药物的局部表达和释放,它们的临床应用受到限制。远程控制技术的快速发展使得能够在时间和空间上精确控制生物过程。我们基于热敏转录阻遏物TlpA39开发了由可激活的整合基因电路介导的治疗活性工程细菌。通过启动子工程和核糖体结合位点筛选,我们以最小的噪声和高的诱导效率实现了超声(US)诱导的工程菌蛋白表达和分泌。具体来说,肿瘤内或静脉内递送,通过US辐射诱导的凋亡蛋白天青蛋白和免疫检查点抑制剂的释放,工程细菌定植肿瘤抑制了肿瘤的生长,在不同的肿瘤小鼠模型中,靶向程序性死亡配体1的纳米抗体。除了开发用于肿瘤治疗的安全和高性能设计细菌,我们的研究说明了一个由超声遗传学控制的治疗平台,该平台可用于基于细菌的精准医学.
    Bacteria-based therapies are powerful strategies for cancer therapy, yet their clinical application is limited by a lack of tunable genetic switches to safely regulate the local expression and release of therapeutic cargoes. Rapid advances in remote-control technologies have enabled precise control of biological processes in time and space. We developed therapeutically active engineered bacteria mediated by a sono-activatable integrated gene circuit based on the thermosensitive transcriptional repressor TlpA39. Through promoter engineering and ribosome binding site screening, we achieved ultrasound (US)-induced protein expression and secretion in engineered bacteria with minimal noise and high induction efficiency. Specifically, delivered either intratumorally or intravenously, engineered bacteria colonizing tumors suppressed tumor growth through US-irradiation-induced release of the apoptotic protein azurin and an immune checkpoint inhibitor, a nanobody targeting programmed death-ligand 1, in different tumor mouse models. Beyond developing safe and high-performance designer bacteria for tumor therapy, our study illustrates a sonogenetics-controlled therapeutic platform that can be harnessed for bacteria-based precision medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超声技术,与基因工程和化学概念协同利用,已经开始打开通往超声遗传学非凡领域的大门-一种在分子水平上远程协调细胞功能的开创性范例。这种融合不仅能够精确靶向成像和治疗干预,也将我们对机械生物学的理解提升到无与伦比的深度。声遗传学工具利用小组织体积内的机械力,同时保持周围生理环境的完整性,达到高时空精度达几十厘米的深度。这些能力规避了替代体内控制方法如光遗传学和磁遗传学的固有物理限制。在这次审查中,我们首先讨论机械敏感性离子通道,最常用的超声介质,在哺乳动物和非哺乳动物系统中。随后,我们提供了一个全面的国家的最先进的超声遗传方法,利用超声波的热或机械特征。此外,我们探索围绕机械化学反应大分子系统设计的策略。此外,我们深入研究了生物分子功能的超声成像领域,包括利用气体囊泡和声学报告基因。最后,我们揭示了超声遗传学的局限性和挑战,并对这项有前途的技术的未来提出了看法。
    Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    声遗传学是一种新兴的方法,利用超声波操纵转基因细胞。超声波的巨大穿透性使得外部刺激能够非侵入性地应用于深部组织,特别有利于大脑刺激。基因编码的超声介体,一组对超声诱导的生物效应有反应的蛋白质,在确定声遗传学的有效性和应用中起着至关重要的作用。在这种情况下,我们将提供这些超声响应介体的概述,深入研究控制其对超声刺激反应的分子机制,并总结了它们在神经调节中的应用。
    Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超声刺激由于其高水平的安全性和精确的时空分辨率而越来越多地用于研究脑功能和治疗脑疾病。因此,了解超声脑刺激的潜在机制至关重要。在这项研究中,我们研究了NMDA受体在介导超声对小鼠原代海马神经元影响中的作用。我们的结果表明,超声可以单独激活异源NMDA受体亚基,包括NR1A,NR2A,NR2B,在293T细胞中,以及原代神经元中的内源性NMDA受体。这种激活导致未经NMDA受体抑制剂预处理的原代神经元中钙的流入和核c-Fos表达的增加。总之,我们的发现表明,NMDA受体有助于体外超声刺激神经元激活,为超声神经调节的分子机制和超声遗传学技术提供新的介体。
    Ultrasound stimulation is increasingly used to investigate brain function and treat brain diseases due to its high level of safety and precise spatiotemporal resolution. Therefore, it is crucial to understand the underlying mechanisms involved in ultrasound brain stimulation. In this study, we investigate the role of NMDA receptors in mediating the effects of ultrasound on primary hippocampal neurons in mice. Our results show that ultrasound alone can activate heterologous NMDA receptor subunits, including NR1A, NR2A, and NR2B, in 293T cells, as well as endogenous NMDA receptors in primary neurons. This activation leads to an influx of calcium and an increase in nuclear c-Fos expression in primary neurons that have not been pre-treated with an NMDA receptor inhibitor. In conclusion, our findings demonstrate that NMDA receptors contribute to neuronal activation by ultrasound stimulation in vitro, providing insight into the molecular mechanisms of ultrasound neuromodulation and a new mediator for the sonogenetics technique.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对深部大脑中神经元活动的非侵入性控制可以照亮探测脑功能和治疗功能障碍。这里,我们提出了一种具有电路特异性和亚秒时间分辨率的超声基因方法来控制不同的小鼠行为。皮层下区域的目标神经元表达突变的大电导机械敏感离子通道(MscL-G22S),使超声能够触发背侧纹状体中表达MscL的神经元的活动,并增加自由移动的小鼠的运动能力。超声刺激腹侧被盖区表达MscL的神经元可以激活中脑边缘通路,从而触发伏隔核中的多巴胺释放并调节食欲调节。此外,帕金森病模型小鼠丘脑底核的超声刺激改善了其运动协调和移动时间。神经元对超声脉冲串的反应迅速,可逆,可重复。我们还证实,与野生型MscL相比,MscL-G22S突变体更有效地使神经元对超声敏感。总之,我们设计了一种超声方法,可以选择性地操纵靶细胞来激活定义的神经通路,影响特定的行为,缓解神经退行性疾病的症状。
    Noninvasive control of neuronal activity in the deep brain can be illuminating for probing brain function and treating dysfunctions. Here, we present a sonogenetic approach for controlling distinct mouse behavior with circuit specificity and subsecond temporal resolution. Targeted neurons in subcortical regions were made to express a mutant large conductance mechanosensitive ion channel (MscL-G22S), enabling ultrasound to trigger activity in MscL-expressing neurons in the dorsal striatum and increase locomotion in freely moving mice. Ultrasound stimulation of MscL-expressing neurons in the ventral tegmental area could activate the mesolimbic pathway to trigger dopamine release in the nucleus accumbens and modulate appetitive conditioning. Moreover, sonogenetic stimulation of the subthalamic nuclei of Parkinson\'s disease model mice improved their motor coordination and mobile time. Neuronal responses to ultrasound pulse trains were rapid, reversible, and repeatable. We also confirmed that the MscL-G22S mutant is more effective to sensitize neurons to ultrasound compared to the wild-type MscL. Altogether, we lay out a sonogenetic approach which can selectively manipulate targeted cells to activate defined neural pathways, affect specific behaviors, and relieve symptoms of neurodegenerative disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号