RNA, Fungal

RNA,真菌
  • 文章类型: Journal Article
    因子依赖性终止使用分子马达来重塑转录机制,但是相关的机制,尤其是在真核生物中,知之甚少。在这里,我们使用单分子荧光测定法来实时表征由Sen1解旋酶重塑的酿酒酵母转录终止复合物的组成和催化状态。我们确认Sen1以RNA转录本作为其底物,并通过水解多个ATPs来沿其易位,以形成具有停滞的RNA聚合酶II(PolII)转录延伸复合物(TEC)的中间体。我们表明,该中间体在水解单个ATP时解离,导致Sen1和RNA解离,之后,Sen1仍然与RNA结合。我们发现PolII最终处于多种状态:与DNA底物分离,这是通过转录气泡倒带而促进的,被保留在DNA底物上,或沿着DNA底物扩散。我们的结果为理解真核生物中Sen1依赖性转录终止的机制提供了完整的定量框架。
    Factor-dependent termination uses molecular motors to remodel transcription machineries, but the associated mechanisms, especially in eukaryotes, are poorly understood. Here we use single-molecule fluorescence assays to characterize in real time the composition and the catalytic states of Saccharomyces cerevisiae transcription termination complexes remodeled by Sen1 helicase. We confirm that Sen1 takes the RNA transcript as its substrate and translocates along it by hydrolyzing multiple ATPs to form an intermediate with a stalled RNA polymerase II (Pol II) transcription elongation complex (TEC). We show that this intermediate dissociates upon hydrolysis of a single ATP leading to dissociation of Sen1 and RNA, after which Sen1 remains bound to the RNA. We find that Pol II ends up in a variety of states: dissociating from the DNA substrate, which is facilitated by transcription bubble rewinding, being retained to the DNA substrate, or diffusing along the DNA substrate. Our results provide a complete quantitative framework for understanding the mechanism of Sen1-dependent transcription termination in eukaryotes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然缺乏ADAR(腺苷脱氨酶作用于RNA)直向同源物,全基因组A到I编辑特别发生在有性生殖过程中,在许多丝状子囊菌中,包括镰刀菌和粗糙神经孢子菌。与动物中ADAR介导的编辑不同,真菌A-to-I编辑对发夹环和U在-1位置有很强的偏好,这导致UAG和UAA终止密码子的频繁编辑。真菌中的大多数RNA编辑事件都在编码区并引起氨基酸变化。这些编辑事件中的一些已经在实验上表征为在禾谷镰刀菌中提供杂合子和适应性优势。最近的研究表明,在营养生长过程中通常催化tRNA反密码子中A34编辑的FgTad2和FgTad3,2ADAT(作用于tRNA的腺苷脱氨酶)酶介导有性生殖过程中的A到ImRNA编辑。RNA编辑的阶段特异性是由FgTAD2和FgTAD3的短转录同种型以及辅因子如AME1和FIP5的阶段特异性表达赋予的,这些因子有助于在鞘周中编辑mRNA。一起来看,有性生殖过程中的真菌A到IRNA编辑由ADAT催化,并且与tRNA中A34的编辑具有相同的序列和结构偏好。
    Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在真核生物中,组蛋白H3(H3K9me)的Suv39蛋白三甲基化赖氨酸9家族形成组成型异染色质。然而,Suv39蛋白如何在异染色质上成核还没有完全描述。在裂殖酵母中,目前的模型认为Argonaute1相关的小RNA(sRNA)使唯一的H3K9甲基转移酶成核,Clr4/SUV39H,到着丝粒。这里,我们表明,在没有所有sRNAs和H3K9me的情况下,Mtl1和Red1核心(MTREC)/PAXT复合物在异色长非编码RNA(lncRNA)上使Clr4/SUV39H成核,Sir2和Clr3也通过不同的机制积累。H3K9去乙酰化和甲基化的迭代循环以不依赖sRNA的方式从成核中心传播Clr4/SUV39H,生成基础H3K9ME状态。RNAi机制对此起作用以增强和扩增着丝粒处的Clr4/H3K9me信号以建立异染色质。总的来说,我们的数据显示,lncRNAs和RNA质量控制因子可以使异染色质核化,并在真核生物中起到表观遗传沉默的作用。
    In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体RNA(rRNA)在转录和随后的成熟过程中被广泛修饰。三种类型的修改,核糖部分的2'-O-甲基化,假吡啶化,和基础修改,通过snoRNA驱动的机制或独立的酶引入。修饰的核苷酸聚集在功能上重要的位点,包括肽基转移酶中心(PTC)。因此,据推测,修饰的核苷酸在确保核糖体的功能性中起着重要作用。在这项研究中,我们证明了七个25SrRNA修饰,包括四个进化保守的修改,在PTC附近可以同时耗尽而不损失细胞活力。构建了缺乏三个snoRNA基因(snR34,snR52和snR65)和/或表达spb1(D52A/E679K)和nop2(C424A/C478A)的无酶活性变体的酵母突变体。结果表明,PTC中的rRNA修饰共同有助于真核细胞中的有效翻译。25SrRNA中七个修饰核苷酸的缺乏导致细胞生长减少,冷灵敏度,翻译水平下降,和超精确的翻译,正如减少的误解和无稽之谈所表明的那样。修饰m5C2870在不存在其他六个修饰的核苷酸时至关重要。因此,PTC周围rRNA修饰核苷酸的模式对于最佳核糖体翻译活性和翻译保真度至关重要。
    Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2\'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长链非编码RNA(lncRNA)是调节性RNA。酿酒酵母菌株转录数百个lncRNA。LncRNA可以调节邻近基因(顺式调节)或来自lncRNA的远端基因(反式调节)的表达。这里,我们分析了受到乙醇胁迫的酵母lncRNAs的潜在全局顺式和反式调控。对于潜在的顺式调节,对于BMA641-A和S288C菌株,我们观察到大多数lncRNA-邻居基因对在某个点增加表达,然后减少,反之亦然。基于lncRNAs和编码基因启动子之间的转录组谱和三螺旋预测,我们观察到了9种不同的潜在反式调节方式,这些方式以菌株特异性方式起作用。我们的数据提供了酵母中潜在的顺式和反式调节的初始景观,这似乎是菌株特有的。
    Long noncoding RNAs (lncRNAs) are regulatory RNAs. Saccharomyces cerevisiae strains transcribe hundreds of lncRNAs. LncRNAs can regulate the expression of adjacent genes (cis-regulation) or distant genes from lncRNAs (trans-regulation). Here, we analyzed the potential global cis and trans-regulation of lncRNAs of yeast subjected to ethanol stress. For potential cis regulation, for BMA641-A and S288C strains, we observed that most lncRNA-neighbor gene pairs increased the expression at a certain point followed by a decrease, and vice versa. Based on the transcriptome profile and triple helix prediction between lncRNAs and promoters of coding genes, we observed nine different ways of potential trans regulation that work in a strain-specific manner. Our data provide an initial landscape of potential cis and trans regulation in yeast, which seems to be strain-specific.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体生物发生,涉及rRNA和r蛋白的加工/组装是一个至关重要的过程。在酿酒酵母线粒体中,核糖体小亚基包含15SrRNA(15S)。虽然15S5'端处理使用Ccm1p和Pet127p,3'端处理的机制尚不清楚。我们揭示了Rmd9p参与保护/处理15S3'-end。Rmd9p缺陷导致在15S3'-末端上游183个核苷酸的位置切割,并在失去3\'-次要域名的情况下。Rmd9p结合15S前体中的3'端间隔区序列,rmd9和dss1之间的遗传相互作用表明Rmd9p在3'端间隔区加工过程中调节/限制mtEXO活性。
    Ribosome biogenesis, involving processing/assembly of rRNAs and r-proteins is a vital process. In Saccharomyces cerevisiae mitochondria, ribosomal small subunit comprises 15S rRNA (15S). While the 15S 5\'-end processing uses Ccm1p and Pet127p, the mechanisms of the 3\'-end processing remain unclear. We reveal involvement of Rmd9p in safeguarding/processing 15S 3\'-end. Rmd9p deficiency results in a cleavage at a position 183 nucleotides upstream of 15S 3\'-end, and in the loss of the 3\'-minor domain. Rmd9p binds to the sequences in the 3\'-end region of 15S, and a genetic interaction between rmd9 and dss1 indicates that Rmd9p regulates/limits mtEXO activity during the 3\'-end spacer processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    热休克细胞优先翻译热休克(HS)mRNA,但潜在的机制尚不清楚。我们报告说,出芽酵母中的HS诱导eIF4F复合物的分解,其中eIF4G和eIF4E组装成翻译阻滞的mRNA核糖核蛋白颗粒(mRNPs)和HS颗粒(HSGs),而eIF4A促进HS翻译。使用体外重建生物化学,我们表明,eIF4G的热敏eIF4A结合域的构象重排解离eIF4A并促进与mRNA组装成HS-mRNPs,招募额外的翻译因素,包括Pab1p和eIF4E,形成多组分缩合物。使用提取物和细胞实验,我们证明HS-mRNPs和缩合物抑制相关mRNA的翻译,并消耗内务翻译所需的翻译因子,而HSmRNA可以被eIF4A有效翻译。我们得出的结论是,eIF4F复合物是在HS过程中调节平移的热敏节点。
    Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有效的终止是稳健的基因转录所必需的。真核生物使用保守的外核糖核酸酶介导的机制终止RNA聚合酶II(PolII)1-5的mRNA转录。在这里,我们报告了酿酒酵母PolII预终止转录复合物的两种低温电子显微镜结构,该复合物与5'至3'外切核糖核酸酶Rat1及其伴侣Rai1结合。我们的结构表明,Rat1取代了延伸因子Spt5以对接在PolII茎结构域。Rat1屏蔽了PolII的RNA出口通道,引导新生RNA朝向其活性中心,并在新生RNA的5'末端堆叠三个核苷酸。该结构进一步显示Rat1在缩短RNA时朝向PolII旋转。我们的结果为酵母中PolII中Rat1介导的mRNA转录终止以及其他真核生物中外切核糖核酸酶介导的mRNA转录终止提供了结构机制。
    Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5\'-to-3\' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5\' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    系统性真菌感染是一个日益严重的公共卫生威胁,然而,可行的抗真菌药物靶标是有限的,因为真菌与人类共享相似的蛋白质组。然而,真菌中RNA代谢和非编码转录组的特征是独特的。例如,真菌含有人类缺乏的高度结构化的RNA元件,例如线粒体中关键管家基因内的自我剪接内含子。然而,这些线粒体核调节元件的位置和功能在很大程度上没有表征。在这里,我们使用基于RNA结构的生物信息学管道来鉴定干扰医学相关真菌中关键线粒体基因的I组内含子,揭示了它们在少数遗传热点中的固定以及它们在不同的真菌系统发育中的普遍存在,包括所有最优先的病原体,如白色念珠菌,耳念珠菌,烟曲霉和新生隐球菌。然后,我们对来自白色念珠菌和金黄色念珠菌的两个代表性内含子进行了生化鉴定,相对于先前表征的I组内含子,证明了它们异常有效的剪接催化。的确,白色念珠菌线粒体内含子表现出极快的催化周转,即使在环境温度和生理镁离子浓度。我们的结果揭示了病原真菌RNA代谢中一组重要的新参与者,提出了一种有前途的新型抗真菌药物靶标。
    Systemic fungal infections are a growing public health threat, and yet viable antifungal drug targets are limited as fungi share a similar proteome with humans. However, features of RNA metabolism and the noncoding transcriptomes in fungi are distinctive. For example, fungi harbor highly structured RNA elements that humans lack, such as self-splicing introns within key housekeeping genes in the mitochondria. However, the location and function of these mitochondrial riboregulatory elements has largely eluded characterization. Here we used an RNA-structure-based bioinformatics pipeline to identify the group I introns interrupting key mitochondrial genes in medically relevant fungi, revealing their fixation within a handful of genetic hotspots and their ubiquitous presence across divergent phylogenies of fungi, including all highest priority pathogens such as Candida albicans, Candida auris, Aspergillus fumigatus and Cryptococcus neoformans. We then biochemically characterized two representative introns from C. albicans and C. auris, demonstrating their exceptionally efficient splicing catalysis relative to previously-characterized group I introns. Indeed, the C. albicans mitochondrial intron displays extremely rapid catalytic turnover, even at ambient temperatures and physiological magnesium ion concentrations. Our results unmask a significant new set of players in the RNA metabolism of pathogenic fungi, suggesting a promising new type of antifungal drug target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小RNA充当真菌病原体效应子,沉默宿主靶基因以促进感染,一种称为交叉王国RNA干扰(RNAi)的毒力机制。跨王国小RNA产生的基本病原体因子在很大程度上是未知的。我们在此对真菌植物病原体灰葡萄孢中的RNA依赖性RNA聚合酶(RDR)1进行了表征,这是致病性和跨界RNAi所必需的。灰霉病菌bcrdr1敲除(ko)突变体表现出降低的致病性和跨王国小RNA的损失。我们开发了一个“打开”GFP报告子,以在活体植物组织中实时研究跨王国RNAi,这突显了bcrdr1ko突变体在跨王国RNAi中受到损害。此外,通过在转基因拟南芥中表达短串联靶模拟RNA来阻断7种病原体跨王国小RNA,从而降低了真菌病原体B.cinerea和卵菌病原体Hyaloperonosporaarabidopsidis的感染水平。这些结果表明,交叉王国RNAi对于促进宿主感染和使病原体小RNA成为作物保护的有效靶标是重要的。
    Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a \"switch-on\" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号