Protein Interaction Mapping

蛋白质相互作用作图
  • 文章类型: Journal Article
    Interactomics带来了关于蛋白质-蛋白质相互作用(PPI)的大量数据,这些数据涉及所有类型细胞的各种分子过程。然而,这些信息不容易转化为直接和精确的分子界面。这限制了我们对每个交互网络的理解,并阻止了它们的有效调制。许多检测到的相互作用涉及通过折叠域识别短线性基序(SLiM),而其他相互作用依赖于域-域相互作用。功能性SLiM隐藏在许多虚假的中间,对交互体进行更深入的分析。因此,实际接触和直接互动很难识别。因此,需要用户友好的生物信息学工具,能够在蛋白质网络中对基于SLiM的PPI进行快速分子和结构分析。在这一章中,我们描述了使用新的网络服务器SLiMAn来帮助以交互式方式挖掘基于SLiM的PPI。
    Interactomics is bringing a deluge of data regarding protein-protein interactions (PPIs) which are involved in various molecular processes in all types of cells. However, this information does not easily translate into direct and precise molecular interfaces. This limits our understanding of each interaction network and prevents their efficient modulation. A lot of the detected interactions involve recognition of short linear motifs (SLiMs) by a folded domain while others rely on domain-domain interactions. Functional SLiMs hide among a lot of spurious ones, making deeper analysis of interactomes tedious. Hence, actual contacts and direct interactions are difficult to identify.Consequently, there is a need for user-friendly bioinformatic tools, enabling rapid molecular and structural analysis of SLiM-based PPIs in a protein network. In this chapter, we describe the use of the new webserver SLiMAn to help digging into SLiM-based PPIs in an interactive fashion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒受体决定了病毒的组织嗜性,与病毒感染引起的临床结局有一定的关系,这对于识别病毒受体,了解病毒的感染机制和开发进入抑制剂具有重要意义。邻近标记(PL)是一种研究蛋白质-蛋白质相互作用的新技术,但它尚未应用于病毒受体或共受体的鉴定。这里,我们试图通过使用TurboID催化的PL来鉴定SARS-CoV-2的共受体。膜蛋白血管紧张素转换酶2(ACE2)用作诱饵并与TurboID缀合,构建了稳定表达ACE2-TurboID的A549细胞系。在生物素和ATP存在下,SARS-CoV-2假病毒与ACE2-TurboID稳定表达的细胞系孵育,这可以启动TurboID的催化活性,并用生物素标记相邻的内源性蛋白。随后,收获生物素化的蛋白质并通过质谱鉴定。我们鉴定了一种膜蛋白,AXL,已在功能上显示可介导SARS-CoV-2进入宿主细胞。我们的数据表明PL可用于鉴定病毒进入的共受体。
    Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本章强调了理解细胞机制中蛋白质-蛋白质相互作用的重要性,并强调了计算模型在预测这些相互作用中的作用。它讨论了基于序列的方法,如进化跟踪(ET)、相关突变分析(CMA),和消减相关突变(SCM)用于识别关键的氨基酸残基,考虑界面守恒或进化变化。本章还探讨了差分ET等方法,隐藏站点类模型,和空间聚类检测(SCD),用于接口特异性和空间聚类。此外,它研究了结合结构和顺序方法的方法,并通过诸如关键评估相互作用预测(CAPRI)之类的计划来评估建模预测。此外,本章概述了用于分子对接的各种软件程序,详细说明他们的搜索,采样,细化和评分阶段,以及用于静电计算的创新技术和工具,如正常模式分析(NMA)和自适应泊松-玻尔兹曼求解器(APBS)。这些计算和实验方法对于解开蛋白质-蛋白质相互作用至关重要,并有助于开发各种疾病的潜在疗法。
    The chapter emphasizes the importance of understanding protein-protein interactions in cellular mechanisms and highlights the role of computational modeling in predicting these interactions. It discusses sequence-based approaches such as evolutionary trace (ET), correlated mutation analysis (CMA), and subtractive correlated mutation (SCM) for identifying crucial amino acid residues, considering interface conservation or evolutionary changes. The chapter also explores methods like differential ET, hidden-site class model, and spatial cluster detection (SCD) for interface specificity and spatial clustering. Furthermore, it examines approaches combining structural and sequential methodologies and evaluates modeled predictions through initiatives like critical assessment of prediction of interactions (CAPRI). Additionally, the chapter provides an overview of various software programs used for molecular docking, detailing their search, sampling, refinement and scoring stages, along with innovative techniques and tools like normal mode analysis (NMA) and adaptive Poisson-Boltzmann solver (APBS) for electrostatic calculations. These computational and experimental approaches are crucial for unraveling protein-protein interactions and aid in developing potential therapeutics for various diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用参与活细胞中的几乎所有过程,并决定蛋白质的生物学功能。为了获得对蛋白质-蛋白质相互作用的机械理解,蛋白质复合物的三级结构已经通过生物物理实验方法确定,如X射线晶体学和低温电子显微镜。然而,由于实验方法资源昂贵,已经开发了许多计算方法来模拟蛋白质复合物结构。计算蛋白质复合物建模(蛋白质对接)的困难之一是在通常由对接方法生成的许多模型中选择最准确的模型。本文综述了蛋白质对接模型评估方法的研究进展,重点关注将深度学习应用于几种网络体系结构的最新发展。
    Protein-protein interactions are involved in almost all processes in a living cell and determine the biological functions of proteins. To obtain mechanistic understandings of protein-protein interactions, the tertiary structures of protein complexes have been determined by biophysical experimental methods, such as X-ray crystallography and cryogenic electron microscopy. However, as experimental methods are costly in resources, many computational methods have been developed that model protein complex structures. One of the difficulties in computational protein complex modeling (protein docking) is to select the most accurate models among many models that are usually generated by a docking method. This article reviews advances in protein docking model assessment methods, focusing on recent developments that apply deep learning to several network architectures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质结合亲和力预测对于理解复杂的生化途径和揭示蛋白质相互作用网络很重要。由突变引起的结合亲和力变化的定量估计可以为蛋白质功能注释和遗传性疾病诊断提供关键信息。可以使用几种计算工具来预测蛋白质-蛋白质复合物的结合自由能。本章是为预测蛋白质-蛋白质复合物及其突变体的结合自由能而开发的软件的摘要。
    Protein-protein binding affinity prediction is important for understanding complex biochemical pathways and to uncover protein interaction networks. Quantitative estimation of the binding affinity changes caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. The binding free energies of protein-protein complexes can be predicted using several computational tools. This chapter is a summary of software developed for the prediction of binding free energies for protein-protein complexes and their mutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用(PPI)为理解生物系统的原理和阐明无法治愈的疾病的原因提供了有价值的见解。用于PPI计算预测的技术之一是蛋白质-蛋白质对接计算,并开发了各种软件。本章概述了用于蛋白质-蛋白质对接的软件和数据库。
    Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,人们注意到解决生命科学中人工智能(AI)使用问题的出版物数量呈指数增长。而新的建模技术不断被报道。这些方法的潜力是巨大的-从理解基本的细胞过程到发现新药和突破性疗法。蛋白质-蛋白质相互作用的计算研究,对于理解生物系统的运作至关重要,在这个领域也不例外。然而,尽管技术的快速发展和开发新方法的进展,许多方面仍然有挑战性要解决,比如预测蛋白质的构象变化,或更多的“琐碎”问题,如大量的高质量数据。因此,本章重点介绍了研究蛋白质-蛋白质相互作用的各种人工智能方法,然后描述用于此目的的最新算法和程序。然而,考虑到计算科学这一热门领域的相当大的发展速度,当你读到这一章的时候,所描述的算法的发展,或者新的(和更好的)产品的出现应该不足为奇。
    An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more \"trivial\" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    所有细胞成分之间的协同相互作用形成了生物过程的基础。蛋白质-蛋白质相互作用(PPIs)构成了这种相互作用网络的重要组成部分。对PPI的深入了解可以帮助我们更好地了解许多疾病,并导致新的诊断和治疗策略的发展。PPI接口,直到最近,被认为是无药可救的。然而,现在人们认为接口包含“热点”,“可以被小分子靶向。这样的策略需要高质量的PPI结构数据,很难通过实验获得。因此,计算机建模可以补充或替代体外方法。有几种计算方法用于分析结合配偶体的结构数据和蛋白质-蛋白质二聚体/寡聚体结构的建模。蛋白质装配的计算机结构预测的主要问题是获得足够的蛋白质动力学采样。可以考虑蛋白质灵活性和环境影响的方法之一是分子动力学(MD)。虽然用普通MD对整个蛋白质-蛋白质关联过程进行采样在计算上是昂贵的,有几种策略可以利用PPI研究的方法,同时保持资源的合理利用。本章回顾了MD在PPI调查工作流程中的已知应用。
    Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain \"hot spots,\" which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子对接用于预测特定分子与靶标的最佳取向以形成稳定的复合物。它根据配体和靶受体(通常是蛋白质)的结合特性,对任何复合物的3D结构进行预测。这是一个非常有用的工具,它被用作研究配体如何附着在蛋白质上的模型。对接也可用于研究配体和蛋白质的相互作用以分析抑制功效。配体也可以是蛋白质。使得有可能使用许多对接工具来研究两种不同蛋白质之间的相互作用,这些对接工具可用于蛋白质相互作用的基础研究。蛋白质-蛋白质对接是理解蛋白质相互作用和预测尚未通过实验确定的蛋白质复合物结构的关键方法。此外,蛋白质-蛋白质相互作用可以预测靶蛋白的功能和分子的药物样特性。因此,蛋白质对接有助于揭示蛋白质相互作用的见解,也有助于更好地理解分子途径/机制。本章了解蛋白质-蛋白质对接的各种工具(成对和多个),包括他们的方法和作为结果的产出分析。
    Molecular docking is used to anticipate the optimal orientation of a particular molecule to a target to form a stable complex. It makes predictions about the 3D structure of any complex based on the binding characteristics of the ligand and the target receptor usually a protein. It is an exceptionally useful tool, which is used as a model to study how ligands attach to proteins. Docking can also be used for studying the interaction of ligands and proteins to analyze inhibitory efficacy. The ligand may also be a protein, making it possible to study interactions between two different proteins using the numerous docking tools available for basic research on protein interactions. The protein-protein docking is a crucial approach to understanding the protein interactions and predicting the structure of protein complexes that have not yet been experimentally determined. Moreover, the protein-protein interactions can predict the function of target proteins and the drug-like properties of molecules. Therefore, protein docking assists in uncovering insights into protein interactions and also aids in a better understanding of molecular pathways/mechanisms. This chapter comprehends the various tools for protein-protein docking (pairwise and multiple), including their methodologies and analysis of output as results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质是生命系统中的基本有机大分子,在包括免疫检测在内的各种生物学功能中起着关键作用。细胞内贩运,和信号转导。近几十年来,蛋白质的对接技术取得了很大进展,并已成为实验方法的重要补充。蛋白质-蛋白质对接是模拟尚未通过实验解决其结构的蛋白质复合物的有用方法。本章重点介绍主要的搜索策略以及蛋白质-蛋白质对接算法中使用的各种对接程序,其中包括:直接搜索,详尽的全局搜索,局部形状特征匹配,随机搜索,和广泛类别的对接后方法。由于高分辨率蛋白质-蛋白质对接中的骨架灵活性预测和相互作用仍然是整体优化背景下的重要问题,我们提出了几种处理骨干灵活性的方法和解决方案。此外,用于柔性骨干对接的各种对接方法,包括ATTRACT,FlexDock,FLIPDock,Haddock,RosettaDock,FiberDock,等。,连同他们的评分功能,算法,优势,并讨论了局限性。此外,预计搜索技术会有什么进步,不仅包括创建新的搜索算法,还包括增强现有的搜索算法,已经被辩论了。由于构象灵活性是影响对接成功的最关键因素之一,除了开发新的算法来代替刚体对接和评分方法外,还应该进行更多的工作来评估特定情况下结合时的构象灵活性。
    Proteins are the fundamental organic macromolecules in living systems that play a key role in a variety of biological functions including immunological detection, intracellular trafficking, and signal transduction. The docking of proteins has greatly advanced during recent decades and has become a crucial complement to experimental methods. Protein-protein docking is a helpful method for simulating protein complexes whose structures have not yet been solved experimentally. This chapter focuses on major search tactics along with various docking programs used in protein-protein docking algorithms, which include: direct search, exhaustive global search, local shape feature matching, randomized search, and broad category of post-docking approaches. As backbone flexibility predictions and interactions in high-resolution protein-protein docking remain important issues in the overall optimization context, we have put forward several methods and solutions used to handle backbone flexibility. In addition, various docking methods that are utilized for flexible backbone docking, including ATTRACT, FlexDock, FLIPDock, HADDOCK, RosettaDock, FiberDock, etc., along with their scoring functions, algorithms, advantages, and limitations are discussed. Moreover, what progress in search technology is expected, including not only the creation of new search algorithms but also the enhancement of existing ones, has been debated. As conformational flexibility is one of the most crucial factors affecting docking success, more work should be put into evaluating the conformational flexibility upon binding for a particular case in addition to developing new algorithms to replace the rigid body docking and scoring approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号