Protein Interaction Mapping

蛋白质相互作用作图
  • 文章类型: Journal Article
    背景:蛋白质在各种生物过程中起着关键作用,精确预测蛋白质-蛋白质相互作用(PPI)位点对包括生物学在内的许多学科至关重要,医学和药学。虽然深度学习方法已经逐步被实施用于预测蛋白质中的PPI位点,提高其预测性能的任务仍然是一项艰巨的挑战。
    结果:在本文中,我们提出了一种基于动态图卷积神经网络和两阶段迁移学习策略的PPI站点预测模型(DGCPPISP)。最初,我们从双重角度实施迁移学习,即特征输入和模型训练,为我们的模型提供有效的先验知识。随后,我们构建了一个为第二阶段培训设计的网络,建立在动态图卷积的基础上。
    结论:为了评估其有效性,DGCPPISP模型的性能使用两个基准数据集进行审查。随后的结果表明,DGCPPISP在性能方面胜过竞争方法。具体来说,DGCPPISP超越了第二好的方法,EGRET,按5.9%的利润率计算,10.1%,F1测量为13.3%,AUPRC,和MCC度量分别在Dset_186_72_PDB164上。同样,在Dset_331上,它使亚军方法的性能黯然失色,HN-PPISP,14.5%,19.8%,和分别为29.9%。
    BACKGROUND: Proteins play a pivotal role in the diverse array of biological processes, making the precise prediction of protein-protein interaction (PPI) sites critical to numerous disciplines including biology, medicine and pharmacy. While deep learning methods have progressively been implemented for the prediction of PPI sites within proteins, the task of enhancing their predictive performance remains an arduous challenge.
    RESULTS: In this paper, we propose a novel PPI site prediction model (DGCPPISP) based on a dynamic graph convolutional neural network and a two-stage transfer learning strategy. Initially, we implement the transfer learning from dual perspectives, namely feature input and model training that serve to supply efficacious prior knowledge for our model. Subsequently, we construct a network designed for the second stage of training, which is built on the foundation of dynamic graph convolution.
    CONCLUSIONS: To evaluate its effectiveness, the performance of the DGCPPISP model is scrutinized using two benchmark datasets. The ensuing results demonstrate that DGCPPISP outshines competing methods in terms of performance. Specifically, DGCPPISP surpasses the second-best method, EGRET, by margins of 5.9%, 10.1%, and 13.3% for F1-measure, AUPRC, and MCC metrics respectively on Dset_186_72_PDB164. Similarly, on Dset_331, it eclipses the performance of the runner-up method, HN-PPISP, by 14.5%, 19.8%, and 29.9% respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    信号通路负责在细胞之间传递信息和调节细胞生长,分化,和死亡。细胞中的蛋白质通过特定的结构域相互作用形成复合物,在各种生物学功能和细胞信号通路中起着至关重要的作用。细胞信号传导途径中的蛋白质-蛋白质相互作用(PPIs)对于信号传递和调节至关重要。PPIs在信号通路中的时空特征对于理解信号转导的调控机制至关重要。双分子荧光互补(BiFC)是一种直接可视化活细胞中PPI的成像工具,已被广泛用于发现各种生物体中的新型PPI。BiFC在生物学研究的各个领域显示出巨大的应用潜力,药物开发,疾病诊断和治疗,以及其他相关领域。本文系统地总结和分析了BiFC的技术进展及其在阐明已建立的细胞信号通路中的PPI,包括TOR,PI3K/Akt,Wnt/β-catenin,NF-κB,和MAPK。此外,它探索了该技术在揭示植物激素乙烯信号通路中的PPI,生长素,赤霉素,和脱落酸。使用BiFC与CRISPR-Cas9,活细胞成像,和超高分辨率显微镜将增强我们对PPI在细胞信号传导途径的理解。
    Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质是生物体细胞活动的主要执行者,因此,研究蛋白质的亚细胞定位和相互作用对于理解蛋白质功能和阐明生物体的分子机制至关重要。邻近标记是最近开发的用于检测活细胞中蛋白质-蛋白质相互作用的有效方法。与研究蛋白质-蛋白质相互作用的常规方法相比,邻近标签显示高灵敏度,特异性强,和低背景,广泛应用于病原体与宿主之间的蛋白质-蛋白质相互作用的研究。本文综述了生物素连接酶BirA及其突变体的开发和应用的最新进展,并阐明了几种经典生物素连接酶的功能原理。本文旨在阐明基于BirA及其突变体的邻近标记在鉴定病原体与宿主之间的蛋白质-蛋白质相互作用中的作用。
    Proteins serve as the primary executors of cellular activities in organisms, and thus investigating the subcellular localization and interactions of proteins is crucial for understanding protein functions and elucidating the molecular mechanisms in organisms. Proximity labeling is a recently developed effective method for detecting protein-protein interactions in live cells. Compared with the conventional methods for studying protein-protein interactions, proximity labeling demonstrates high sensitivity, strong specificity, and low background and is widely employed in the research of protein-protein interactions between pathogens and hosts. This article reviews the recent progress in the development and applications of the biotin ligase BirA and its mutants and elucidates the functioning principles of several classical biotin ligases. This review aims to clarify the role of proximity labeling based on BirA and its mutants in identifying protein-protein interactions between pathogens and hosts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒受体决定了病毒的组织嗜性,与病毒感染引起的临床结局有一定的关系,这对于识别病毒受体,了解病毒的感染机制和开发进入抑制剂具有重要意义。邻近标记(PL)是一种研究蛋白质-蛋白质相互作用的新技术,但它尚未应用于病毒受体或共受体的鉴定。这里,我们试图通过使用TurboID催化的PL来鉴定SARS-CoV-2的共受体。膜蛋白血管紧张素转换酶2(ACE2)用作诱饵并与TurboID缀合,构建了稳定表达ACE2-TurboID的A549细胞系。在生物素和ATP存在下,SARS-CoV-2假病毒与ACE2-TurboID稳定表达的细胞系孵育,这可以启动TurboID的催化活性,并用生物素标记相邻的内源性蛋白。随后,收获生物素化的蛋白质并通过质谱鉴定。我们鉴定了一种膜蛋白,AXL,已在功能上显示可介导SARS-CoV-2进入宿主细胞。我们的数据表明PL可用于鉴定病毒进入的共受体。
    Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:蛋白质-蛋白质相互作用(PPI)网络对于自动注释蛋白质功能至关重要。由于存在多个PPI网络,用于从不同方面捕获特性的同一组蛋白质,有效地利用这些异构网络是一项具有挑战性的任务。最近,几个深度学习模型结合了所有证据的PPI网络,或连接所有图嵌入以进行蛋白质功能预测。然而,缺乏明智的选择程序阻碍了对来自不同PPI网络的信息的有效利用,由于这些网络的密度不同,结构,和噪音水平。因此,不加区别地组合蛋白质特征会增加噪声水平,导致模型性能下降。
    结果:我们开发了DualNetGO,由分类器和选择器组成的双网络模型,通过有效地选择来自不同来源的特征来预测蛋白质功能,包括PPI网络的图嵌入,蛋白质结构域和亚细胞位置信息。与其他基于网络的模型相比,在人类和小鼠数据集上对DualNetGO的评估显示至少4.5%,BP的Fmax分别提高了6.2%和14.2%,MF和CC基因本体论类别分别为人类,和3.3%,小鼠Fmax改善10.6%和7.7%。我们通过对CAFA3数据的训练和测试来证明我们模型的泛化能力,并通过合并Esm2嵌入来显示其多功能性。我们进一步证明了我们的模型对图形嵌入方法的选择不敏感,并且节省了时间和内存。这些结果表明,结合我们的模型选择的PPI网络和蛋白质属性的特征子集在利用PPI网络信息方面比仅使用来自各种PPI网络的一种或级联图嵌入更有效。
    方法:DualNetGO的源代码和一些实验数据可在以下网址获得:https://github.com/georgedashen/DualNetGO。
    背景:补充数据可在Bioinformatics在线获得。
    BACKGROUND: Protein-protein interaction (PPI) networks are crucial for automatically annotating protein functions. As multiple PPI networks exist for the same set of proteins that capture properties from different aspects, it is a challenging task to effectively utilize these heterogeneous networks. Recently, several deep learning models have combined PPI networks from all evidence, or concatenated all graph embeddings for protein function prediction. However, the lack of a judicious selection procedure prevents the effective harness of information from different PPI networks, as these networks vary in densities, structures, and noise levels. Consequently, combining protein features indiscriminately could increase the noise level, leading to decreased model performance.
    RESULTS: We develop DualNetGO, a dual-network model comprised of a Classifier and a Selector, to predict protein functions by effectively selecting features from different sources including graph embeddings of PPI networks, protein domain, and subcellular location information. Evaluation of DualNetGO on human and mouse datasets in comparison with other network-based models shows at least 4.5%, 6.2%, and 14.2% improvement on Fmax in BP, MF, and CC gene ontology categories, respectively, for human, and 3.3%, 10.6%, and 7.7% improvement on Fmax for mouse. We demonstrate the generalization capability of our model by training and testing on the CAFA3 data, and show its versatility by incorporating Esm2 embeddings. We further show that our model is insensitive to the choice of graph embedding method and is time- and memory-saving. These results demonstrate that combining a subset of features including PPI networks and protein attributes selected by our model is more effective in utilizing PPI network information than only using one kind of or concatenating graph embeddings from all kinds of PPI networks.
    METHODS: The source code of DualNetGO and some of the experiment data are available at: https://github.com/georgedashen/DualNetGO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解蛋白质-蛋白质相互作用(PPI)有助于识别蛋白质功能并开发其他重要应用,例如药物制备和蛋白质-疾病关系识别。正在深入研究基于深度学习的方法来确定PPI,以减少以前测试方法的成本和时间。在这项工作中,我们将深度学习与特征融合相结合,利用这两种方法的优势,手工制作的功能,和蛋白质序列嵌入。在酵母核心和Human数据集上使用五倍交叉验证提出的模型的准确性分别为96.34%和99.30%。分别。在预测重要PPI网络中的相互作用的任务中,我们的模型正确地预测了单核中的所有相互作用,Wnt相关,和癌症特异性网络。跨物种数据集上的实验结果,包括秀丽隐杆线虫,幽门螺杆菌,智人,小家鼠,和大肠杆菌,还表明,我们的特征融合方法有助于提高PPI预测模型的泛化能力。
    Understanding protein-protein interactions (PPIs) helps to identify protein functions and develop other important applications such as drug preparation and protein-disease relationship identification. Deep-learning-based approaches are being intensely researched for PPI determination to reduce the cost and time of previous testing methods. In this work, we integrate deep learning with feature fusion, harnessing the strengths of both approaches, handcrafted features, and protein sequence embedding. The accuracies of the proposed model using five-fold cross-validation on Yeast core and Human datasets are 96.34% and 99.30%, respectively. In the task of predicting interactions in important PPI networks, our model correctly predicted all interactions in one-core, Wnt-related, and cancer-specific networks. The experimental results on cross-species datasets, including Caenorhabditis elegans, Helicobacter pylori, Homo sapiens, Mus musculus, and Escherichia coli, also show that our feature fusion method helps increase the generalization capability of the PPI prediction model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从蛋白质相互作用网络中识别蛋白质复合物对于理解蛋白质功能至关重要。细胞过程和疾病机制。现有的方法通常依赖于蛋白质相互作用网络高度可靠的假设,然而在现实中,数据中有相当大的噪音。此外,这些方法未能解释生物分子在蛋白质复合物形成过程中的调节作用,这对于理解蛋白质相互作用的产生至关重要。为此,我们提出了一种用于蛋白质复合物鉴定的时空约束RNA-蛋白质异质网络(STRPCI)。STRPCI首先通过提取时空相互作用模式,构建了一个多重异质蛋白质信息网络来捕获深度语义信息。然后,它利用双视图聚合器来聚合来自不同层的异构邻居信息。最后,通过对比学习,STRPCI协同优化了不同时空相互作用模式下的蛋白质嵌入表示。基于蛋白质嵌入相似性,STRPCI对蛋白质相互作用网络进行重新加权,并用核心附着策略鉴定蛋白质复合物。通过考虑蛋白质相互作用的时空约束和生物分子调控因子,STRPCI测量相互作用的紧密度,从而减轻噪声数据对复杂识别的影响。对四个真实PPI网络的评估结果证明了STRPCI的有效性和强大的生物学意义。STRPCI的源代码实现可从https://github.com/LI-jasm/STRPCI获得。
    The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA-protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用(PPIs)是许多重要的生物过程的基础,蛋白质复合物是实现这些相互作用的关键形式。了解蛋白质复合物及其功能对于阐明生命过程的机制至关重要,疾病诊断和治疗以及药物开发。然而,鉴定蛋白质复合物的实验方法有许多局限性。因此,有必要使用计算方法来预测蛋白质复合物。蛋白质序列可以指示蛋白质的结构和生物学功能,同时还确定它们与其他蛋白质的结合能力,影响蛋白质复合物的形成。整合这些特征来预测蛋白质复合物是非常有前途的,但是目前没有有效的框架可以同时利用蛋白质序列和PPI网络拓扑进行复杂的预测。为了应对这一挑战,我们开发了HyperGraphComplex,一种基于超图变分自编码器的方法,可以在没有特征工程的情况下从蛋白质序列中捕获表达特征,同时考虑PPI网络的拓扑特性,预测蛋白质复合物。实验结果表明,与最先进的方法相比,HyperGraphComplex实现了令人满意的预测性能。进一步的生物信息学分析表明,预测的蛋白质复合物具有与已知相似的属性。此外,案例研究证实了我们的模型在识别蛋白质复合物方面的显着预测能力,包括3个不仅通过最近的研究进行了实验验证,而且还显示了AlphaFold-Multimer的高置信度结构预测。我们相信,HyperGraphComplex算法和我们提供的全蛋白质组高置信度蛋白质复合物预测数据集将有助于阐明蛋白质如何以复合物的形式调节细胞过程,并促进疾病诊断和治疗以及药物开发。源代码可在https://github.com/LiDlab/HyperGraphComplex上获得。
    Protein-protein interactions (PPIs) are the basis of many important biological processes, with protein complexes being the key forms implementing these interactions. Understanding protein complexes and their functions is critical for elucidating mechanisms of life processes, disease diagnosis and treatment and drug development. However, experimental methods for identifying protein complexes have many limitations. Therefore, it is necessary to use computational methods to predict protein complexes. Protein sequences can indicate the structure and biological functions of proteins, while also determining their binding abilities with other proteins, influencing the formation of protein complexes. Integrating these characteristics to predict protein complexes is very promising, but currently there is no effective framework that can utilize both protein sequence and PPI network topology for complex prediction. To address this challenge, we have developed HyperGraphComplex, a method based on hypergraph variational autoencoder that can capture expressive features from protein sequences without feature engineering, while also considering topological properties in PPI networks, to predict protein complexes. Experiment results demonstrated that HyperGraphComplex achieves satisfactory predictive performance when compared with state-of-art methods. Further bioinformatics analysis shows that the predicted protein complexes have similar attributes to known ones. Moreover, case studies corroborated the remarkable predictive capability of our model in identifying protein complexes, including 3 that were not only experimentally validated by recent studies but also exhibited high-confidence structural predictions from AlphaFold-Multimer. We believe that the HyperGraphComplex algorithm and our provided proteome-wide high-confidence protein complex prediction dataset will help elucidate how proteins regulate cellular processes in the form of complexes, and facilitate disease diagnosis and treatment and drug development. Source codes are available at https://github.com/LiDlab/HyperGraphComplex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过实验确认蛋白质之间复杂的相互作用网络的过程是耗时且费力的。本研究旨在解决基于图神经网络(GNN)的蛋白质-蛋白质相互作用(PPI)预测。设计了一种新颖的PPI多级预测模型,称为DSSGNN-PPI(PPI的双重结构和序列GNN)。最初,构建氨基酸残基之间的距离图。随后,距离图被馈送到底层的图注意网络模块中。这使我们能够有效地学习编码蛋白质三维结构的矢量表示,并同时聚合关键局部模式和整体拓扑信息,以获得充分表示局部和全局结构特征的图嵌入。此外,获得反映序列属性的嵌入表示。将两个特征融合以构建高水平的蛋白质复杂网络,将其馈送到设计的门控图注意网络中,以提取复杂的拓扑模式。通过结合来自下游结构图和上游序列模型的异构多源信息,全面加强对PPI的理解。一系列评估结果验证了DSSGNN-PPI框架在增强蛋白质间多类型相互作用预测方面的显着有效性。多级表示学习和信息融合策略为结构生物学问题提供了一种新的有效解决范式。DSSGNN-PPI的源代码已托管在GitHub上,可在https://github.com/cstudy1/DSSGNN-PPI上获得。
    The process of experimentally confirming complex interaction networks among proteins is time-consuming and laborious. This study aims to address Protein-Protein Interactions (PPIs) prediction based on graph neural networks (GNN). A novel multilevel prediction model for PPIs named DSSGNN-PPI (Double Structure and Sequence GNN for PPIs) is designed. Initially, a distance graph between amino acid residues is constructed. Subsequently, the distance graph is fed into an underlying graph attention network module. This enables us to efficiently learn vector representations that encode the three-dimensional structure of proteins and simultaneously aggregate key local patterns and overall topological information to obtain graph embedding that adequately represent local and global structural features. In addition, the embedding representations that reflect sequence properties are obtained. Two features are fused to construct high-level protein complex networks, which are fed into the designed gated graph attention network to extract complex topological patterns. By combining heterogeneous multi-source information from downstream structure graph and upstream sequence models, the understanding of PPIs is comprehensively enhanced. A series of evaluation results validate the remarkable effectiveness of DSSGNN-PPI framework in enhancing the prediction of multi-type interactions among proteins. The multilevel representation learning and information fusion strategies provide a new effective solution paradigm for structural biology problems. The source code for DSSGNN-PPI has been hosted on GitHub and is available at https://github.com/cstudy1/DSSGNN-PPI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用(PPI)类型的预测增强了对蛋白质潜在结构特征和功能的理解,这引起了多标签分类问题。标称特征直接描述蛋白质的物理化学特征,与有序特征相比,与蛋白质之间的相互作用类型建立更稳健的相关性。受此激励,我们提出了一种多标签PPI预测模型,称为CoMPPI(基于共同训练的蛋白质-蛋白质相互作用的多标签预测)。这种方法旨在最大化从蛋白质序列中提取的有序和标称特征的效用。具体来说,CoMPPI结合了图卷积网络(GCN)和一维卷积运算,以单独处理特征的互补子集,以更有效的方式利用本地和上下文信息。此外,构建了两个多类型PPI数据集,以消除以前数据集中的重复。我们将CoMPPI的性能与三种最先进的方法在使用不同方案分区的三个数据集上进行比较(广度优先搜索,深度优先搜索,andRandom),CoMPPI在所有情况下始终优于其他方法,在Micro-F1中表现出从3.81%到32.40%的改进。随后的消融实验证实了采用联合训练框架进行多标签PPI预测的有效性,为该领域的未来发展指明了有希望的途径。
    Prediction of protein-protein interaction (PPI) types enhances the comprehension of the underlying structural characteristics and functions of proteins, which gives rise to a multi-label classification problem. The nominal features describe the physicochemical characteristics of proteins directly, establishing a more robust correlation with the interaction types between proteins than ordered features. Motivated by this, we propose a multi-label PPI prediction model referred to as CoMPPI (Co-training based Multi-Label prediction of Protein-Protein Interaction). This approach aims to maximize the utility of both ordered and nominal features extracted from protein sequences. Specifically, CoMPPI incorporates graph convolutional network (GCN) and 1D convolution operation to process the complementary subsets of features individually, leveraging both local and contextualized information in a more efficient way. In addition, two multi-type PPI datasets were constructed to eliminate the duplication in previous datasets. We compare the performance of CoMPPI with three state-of-the-art methods on three datasets partitioned using distinct schemes (Breadth-first search, Depth-first search, and Random), CoMPPI consistently outperforms the other methods across all cases, demonstrating improvements ranging from 3.81% to 32.40% in Micro-F1. The subsequent ablation experiment confirms the efficacy of employing the co-training framework for multi-label PPI prediction, indicating promising avenues for future advancements in this domain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号