Photothermal properties

  • 文章类型: Journal Article
    生物膜介导的植入物感染对人类健康构成巨大威胁。迫切需要探索扭转这种局面的战略。在这里,我们设计了3-氨基-1,2,4-三唑-5-硫醇(ATT)修饰的金纳米簇(AGNs),以实现生物膜靶向和近红外(NIR)-II光响应性抗生物膜治疗。AGNC可以通过在ATT上的胺基和DNA上的羟基之间形成氢键与细菌胞外DNA相互作用。即使在短时间(5分钟)照射的低功率密度(0.5W/cm2)下,AGNCs也显示出光热特性,使它们在消除生物膜方面非常有效,分散率高达90%。体内感染的导管植入模型证明了AGNC根除生物膜内包裹的大约90%的细菌的异常高的能力。此外,AGNC在小鼠中没有可检测到的毒性或全身性作用。我们的研究表明,AGNCs具有长期预防和消除生物膜介导的感染的巨大潜力。
    The biofilm-mediated implant infections pose a huge threat to human health. It is urgent to explore strategies to reverse this situation. Herein, we design 3-amino-1,2,4-triazole-5-thiol (ATT)-modified gold nanoclusters (AGNCs) to realize biofilm-targeting and near-infrared (NIR)-II light-responsive antibiofilm therapy. The AGNCs can interact with the bacterial extracellular DNA through the formation of hydrogen bonds between the amine groups on the ATT and the hydroxyl groups on the DNA. The AGNCs show photothermal properties even at a low power density (0.5 W/cm2) for a short-time (5 min) irradiation, making them highly effective in eradicating the biofilm with a dispersion rate up to 90 %. In vivo infected catheter implantation model demonstrates an exceptional high ability of the AGNCs to eradicate approximately 90 % of the bacteria encased within the biofilms. Moreover, the AGNCs show no detectable toxicity or systemic effects in mice. Our study suggests the great potential of the AGNCs for long-term prevention and elimination of the biofilm-mediated infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当使用近红外辐射照射时,光到热能的光热转化是金属纳米颗粒的固有光学性质。然而,尺寸和形状对在600-700nm范围内具有光吸收的纳米金颗粒的光热行为以及在水凝胶中的掺入的影响没有得到很好的报道。在这项研究中,nanomakura形各向异性金纳米颗粒(AuNMs)通过表面活性剂辅助种子介导的方案合成。具有可变碳尾长度(n=16、14、12)的四元阳离子表面活性剂用作封端,以调节纳米金的等离子体峰在600-700nm波长内。合成的金nanomakura的纵横比和各向异性会影响近红外辐照时的光热响应。通过CTAB-AuNM中670、650和630nm处的纵向表面等离子体共振分析获得的吸收峰,碳尾长度的作用很明显,MTAB-AuNM,和DTAB-AuNM,分别。此外,由于保留了等离子体的稳定性,研究了合成的nanomakuras的形态和周围环境对光热转化的影响。有趣的是,我们发现光热转换被专门分配给形态特征(即,高宽比的纳米颗粒显示出更高的温度变化,反之亦然,而与使用的表面活性剂无关)。为了实现生物功能和稳定性,我们使用基于kappa-角叉菜胶-(k-CG)的水凝胶掺入nanomakuras,并进一步评估其光热响应。与k-CG结合的Nanomakura颗粒也能够显示光热转化,描绘了它们与光相互作用而不受阻碍的能力。CTAB-AuNM,MTAB-AuNM,和DTAB-AuNM掺入水凝胶珠后达到约17.2,约17.2和约15.7°C,分别。另一方面,与AuNMs相比,掺入k-CG后的金纳米棒并没有产生多少光热响应。结果显示了一个有希望的平台,可以利用nanomakura颗粒和κ-角叉菜胶水凝胶来实现纳米光子的使用,光热,和生物成像应用。
    Photothermal conversion of light into heat energy is an intrinsic optical property of metal nanoparticles when irradiated using near-infrared radiation. However, the impact of size and shape on the photothermal behaviour of gold nanomakura particles possessing optical absorption within 600-700 nm as well as on incorporation in hydrogels is not well reported. In this study, nanomakura-shaped anisotropic gold nanoparticles (AuNMs) were synthesized via a surfactant-assisted seed-mediated protocol. Quaternary cationic surfactants having variable carbon tail length (n = 16, 14, 12) were used as capping for tuning the plasmon peak of gold nanomakura within a 600-700 nm wavelength. The aspect ratio as well as anisotropy of synthesized gold nanomakura can influence photothermal response upon near-infrared irradiation. The role of carbon tail length was evident via absorption peaks obtained from longitudinal surface plasmon resonance analysis at 670, 650, and 630 nm in CTAB-AuNM, MTAB-AuNM, and DTAB-AuNM, respectively. Furthermore, the impact of morphology and surrounding milieu of the synthesized nanomakuras on photothermal conversion is investigated owing to their retention of plasmonic stability. Interestingly, we found that photothermal conversion was exclusively assigned to morphological features (i.e., nanoparticles of higher aspect ratio showed higher temperature change and vice versa irrespective of the surfactant used). To enable biofunctionality and stability, we used kappa-carrageenan- (k-CG) based hydrogels for incorporating the nanomakuras and further assessed their photothermal response. Nanomakura particles in association with k-CG were also able to show photothermal conversion, depicting their ability to interact with light without hindrance. The CTAB-AuNM, MTAB-AuNM, and DTAB-AuNM after incorporation into hydrogel beads attained up to ≈17.2, ≈17.2, and ≈15.7 °C, respectively. On the other hand, gold nanorods after incorporation into k-CG did not yield much photothermal response as compared to that of AuNMs. The results showed a promising platform to utilize nanomakura particles along with kappa-carrageenan hydrogels for enabling usage on nanophotonic, photothermal, and bio-imaging applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抑郁症是一个重要的全球健康问题,由于常规药物治疗的有效性有限,仍然没有得到充分治疗。一种潜在的治疗剂,金丝桃素(HYP),被确定为有效的天然抗抑郁药。然而,它的水溶性差,低生物利用度,以及穿透脑实质的能力有限阻碍了其临床应用。为了解决这些缺点并增强HYP的治疗效果,将其加载到用神经细胞靶向肽RVG29修饰的黑磷纳米片(BP)上,以合成名为BP-RVG29@HYP(BRH)的纳米平台。该平台用作HYP的纳米载体,并将BP的优势与先进的递送方法和精确的靶向策略相结合。在808nm近红外辐射(NIR)的影响下,BRH有效地穿越了体外BBB模型。体内实验验证了这些发现,证明BRH治疗可显着减轻小鼠的抑郁样行为和氧化应激。重要的是,BRH表现出优异的安全性,造成最小的不良影响,这凸显了它作为一种有前途的治疗剂的潜力。简而言之,这种新型纳米载体在抗抑郁药物的开发中具有巨大的前景,可以为治疗抑郁症创造新的途径。
    Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经广泛研究了胶体金颗粒在高温治疗中的潜力,因为它们能够在外部激光的存在下被激发。然而,它们的光热效率受生理环境的影响。在这项研究中,我们的目标是评估黄金球的能力,杆,和星形胶体在激光刺激下升高血浆和乳腺癌模拟流体的温度。此外,金纳米结构的光学性质和胶体稳定性与生理介质的依赖性,粒子形状,并确定涂层。金颗粒的光-热效率取决于形状。星形胶体的光热转换效率比球形胶体高36%。然而,周围介质的升高温度在星形胶体中是最低的。当金纳米结构在生理液体中通过激光刺激退出时,离子/阳离子附着在金颗粒的表面,导致胶体不稳定,这限制了电子振荡并减少了等离子体激发产生的能量。荧光素(Fl)和聚乙二醇(PEG)附着在金球上,增强了它们的胶体稳定性和光热效率;后处理,他们还记得他们的光学特性。
    Colloidal gold particles have been extensively studied for their potential in hyperthermia treatment due to their ability to become excited in the presence of an external laser. However, their light-to-heat efficiency is affected by the physiologic environment. In this study, we aimed to evaluate the ability of gold sphere, rod, and star-shaped colloids to elevate the temperature of blood plasma and breast cancer-simulated fluid under laser stimulation. Additionally, the dependence of optical properties and colloid stability of gold nanostructures with physiological medium, particle shape, and coating was determined. The light-to-heat efficiency of the gold particle is shape-dependent. The light-to-heat conversion efficiency of a star-shaped colloid is 36% higher than that of sphere-shaped colloids. However, the raised temperature of the surrounding medium is the lowest in the star-shaped colloid. When gold nanostructures are exited with a laser stimulation in a physiological fluid, the ions/cations attach to the surface of the gold particles, resulting in colloidal instability, which limits electron oscillation and diminishes the energy generated by the plasmonic excitation. Fluorescein (Fl) and polyethylene glycol (PEG) attached to gold spheres enhances their colloidal stability and light-to-heat efficiency; post-treatment, they remand their optical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    优化异质结复合材料中光生载流子的分离和传输机制,而充分利用各材料的活性位点是提高光催化活性的关键因素。在这里,我们通过简单的溶剂热法成功合成了有缺陷的CdLa2S4@La(OH)3@Co3S4(CLS@LOH@CS)Z型异质结光催化剂,具有广谱吸收和优异的光催化活性。La(OH)3纳米片不仅大大增加了光催化剂的比表面积,但也可以与CdLa2S4(CLS)耦合并通过转换照射光形成Z方案异质结。此外,通过原位硫化法获得具有光热性能的Co3S4,可以释放热量以提高光生载流子的迁移率,也可用作制氢的助催化剂。最重要的是,Co3S4的形成导致CLS中大量的硫空位缺陷,从而提高了光生电子和空穴的分离效率,并增加催化活性位点。因此,CLS@LOH@CS异质结的最大产氢速率可以达到26.4mmolg-1h-1,是原始CLS(0.09mmolg-1h-1)的293倍。这项工作将为通过切换光生载流子的分离和传输模式来合成高效异质结光催化剂提供新的视野。
    Optimize the separation and transport mechanism of photogenerated carriers in heterojunction composites, and make full use of the active sites of each material are key factors to enhance photocatalytic activity. Herein, we successfully synthesize defective CdLa2S4@La(OH)3@Co3S4 (CLS@LOH@CS) Z-scheme heterojunction photocatalysts through a facile solvothermal method, which show broad-spectrum absorption and excellent photocatalytic activity. La(OH)3 nanosheets not only greatly increase the specific surface area of photocatalyst, but also can be coupled with CdLa2S4 (CLS) and form Z-scheme heterojunction by converting irradiation light. In addition, Co3S4 with photothermal properties is obtained by in-situ sulfurization method, which can release heat to improve the mobility of photogenerated carriers, and also be used as a cocatalyst for hydrogen production. Most importantly, the formation of Co3S4 leads to a large number of sulfur vacancy defects in CLS, and thus improving the separation efficiency of photogenerated electrons and holes, and increasing the catalytic active sites. Consequently, the maximum hydrogen production rate of CLS@LOH@CS heterojunctions can reach 26.4 mmol g-1h-1, which is 293 times than pristine CLS (0.09 mmol g-1h-1). This work will provide a new horizon for synthesizing high efficiency heterojunction photocatalysts through switching the separation and transport modes of photogenerated carrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MXenes在光热应用中具有有效的光热转换的潜力。为了在此类应用中有效利用MXenes,重要的是要了解潜在的非平衡过程,包括电子-声子和声子-声子耦合。这里,我们使用瞬态电子和X射线衍射来研究飞秒至纳秒时间尺度下的光激发MXenes的加热和冷却。我们的结果表明,在基于Ti3C2的MXenes中,电子-声子耦合非常强,导致晶格在几百飞秒内加热。我们还系统地研究了不同薄膜厚度的MXenes中的散热,化学表面终止,薄片尺寸,和退火条件。我们发现,热边界电导(TBC)控制着比光学穿透深度薄的薄膜中的热弛豫。我们实现了TBC的2倍增强,通过控制薄片尺寸或化学表面终止,达到20MWm-2K-1,这对于MXenes的光热和热电应用中的工程散热很有希望。
    MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    赋予超疏水性材料多功能性对于提高它们的效用是极其期望的。在这里,我们已经开发了一种以蒙脱石作为微骨架载体和原位生长的ZIF-8纳米颗粒的超疏水材料,并将它们装载在新开发的荧光碳点上。ZIF-8在OMMT上的原位生长构建了致密的纳米级粗糙结构,同时自组装产生了丰富的微孔,从而形成独特的分层微孔/微片/纳米颗粒三层微米和纳米结构。然后,通过使用聚二甲基硅氧烷(PDMS)作为多官能聚合物粘合剂的简易喷涂技术制造多官能超疏水涂层。PDMS/RB-CD/ZIF-8@OMMT表现出超疏水性,水接触角为164.7°,水滑动角为1.4°,具有良好的自清洁性能。此外,在这项工作中开发了新颖的碳点,可以赋予材料独特的荧光性能和光热性能。荧光表征揭示了300-800nm之间的多个发射峰以及激发波长依赖性和独立性。光热实验揭示了由光阱和与光热加热相关的吸收波长引起的有效的光热转换。受益于致密的微孔/微片/纳米颗粒结构,超疏水性在120次磨损循环后仍然保持。此外,电化学阻抗谱(EIS)显示阻抗显著增加,具有优异的耐腐蚀性。该超疏水涂层还表现出优异的抗UV性和良好的热稳定性。多功能荧光超疏水材料将在不同领域开发各种潜在的应用。
    Conferring versatility to superhydrophobic materials is extremely desirable to advance their utility. Herein, we have developed a superhydrophobic material with montmorillonite as microskeleton supports and in situ grown ZIF-8 nanoparticles and loaded them with newly developed fluorescent carbon dots. In situ growth of the ZIF-8 on OMMT constructs a dense nanoscale rough structure and meanwhile self-assembly generates abundant microporous, thus forming unique hierarchical microporous/microsheet/nanoparticle tri-tier micro and nano structures. Then the multifunctional superhydrophobic coating is fabricated by a facile spraying technique using polydimethylsiloxane (PDMS) as a multifunctional polymer binder. The PDMS/RB-CDs/ZIF-8@OMMT exhibits superhydrophobicity with a water contact angle of 164.7° and a water sliding angle of 1.4°, which also possesses good self-cleaning performance. Moreover, novel carbon dots are developed in this work which can confer unique fluorescent properties and photothermal properties to materials. Fluorescence characterization reveals the multiple emission peaks among 300-800 nm and excitation wavelength dependence and independence. Photothermal experiments unveil an efficient light-to-heat conversion caused by the light traps and absorption wavelengths associated with photothermal heating. Benefiting from the dense microporous/microsheet/nanoparticle structures, the superhydrophobicity is still maintained after 120 cycles of abrasion. Moreover, electrochemical impedance spectroscopy (EIS) reveals a significant increase in impedance, which is associated with excellent corrosion resistance. The superhydrophobic coating also exhibits superior UV resistance and good thermal stability. Multifunctional fluorescent superhydrophobic materials will enable the development of various and potential applications in different fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二氧化硅-金纳米结构(SGNS),由金纳米粒子装饰的二氧化硅核组成,具有将近红外(NIR)波长转换为热量的光热能力。这项工作提出了一个简单的,高效,和可复制的SGN合成方法及其表征方法:(1)透射电子显微镜,以获得颗粒的显微照片及其相应的直径分布;(2)衍射图,显示二氧化硅的无定形原子排列和金纳米颗粒的晶体原子排列;(3)zeta电位,证实SGN在胶体溶液中的稳定性;(4)热图像显示SGN将NIR辐射转化为热及其各自的温度增量的能力。SGN在直径为63、83和132nm的二氧化硅核上合成,并用部分金壳装饰。它们以波长852nm的340mW/cm2的相干光强度加热。该波长在人体光学窗口的范围内;因此,SGN可用于肿瘤的光热消融,而对组织没有损害。不同尺寸SGN的加热需要6-8分钟的近红外辐射,和它们的冷却,一旦激光被关掉,是在2-3分钟的顺序。发现SGNS,纤芯直径为132纳米,具有显著的光热容量。这使他们能够将周围环境的温度提高4.4ºC。这种温度的升高足以诱导细胞坏死,这使得SGNS成为光热处理的一个很好的选择。
    Silica-Gold Nanostructures (SGNs), composed of a silica core decorated by gold nanoparticles, have the photothermal capacity to transform near-infrared (NIR) wavelengths into heat. This work presents a simple, efficient, and replicable method of synthesis of SGNs and their characterization by: (1) transmission electron microscopy to obtain micrographs of the particles and their corresponding diameter distribution; (2) diffraction patterns showing the amorphous atomic arraignment of the silica and the crystalline atomic arrangement of the gold nanoparticles; (3) zeta potential confirming the stability of the SGNs in a colloidal solution; and (4) thermal images displaying the capacity of SGNs to convert NIR irradiation into heat and their respective increment in temperature. SGNs were synthesized over silica cores with diameters of 63, 83, and 132 nm and decorated with a partial gold shell. They were heated with a coherent light intensity of 340 mW/cm2 with a wavelength of 852 nm. This wavelength is within the range of the optical window of the human body; therefore, SGNs may be used for the photothermal ablation of tumors with no damage to the tissue. The heating of different dimensions of SGNs took 6-8 min of NIR radiation, and their cooling, once the laser was turned off, was in the order of 2-3 min. It was found that SGNs, with a core diameter of 132 nm, have a notable photothermal capacity. That enables them to increase the temperature of their surroundings by 4.4 ºC. This increment in temperature is sufficient to induce cellular necrosis, which makes SGNs a good option for photothermal treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发具有优异机械性能和光热转化能力的智能水凝胶有助于扩展其应用领域。在这里,首次采用γ射线辐射技术合成了MXene/明胶/聚丙烯酰胺(M/G/PAM)纳米复合双网络(NDN)水凝胶。与明胶/聚丙烯酰胺双网络水凝胶相比,优化后的M3/G/PAMNDN水凝胶显示出更好的机械性能(拉伸强度为634±10kPa,抗压强度为3.44±0.12MPa,压缩比为90%)。M3/G/PAMNDN水凝胶表现出更快的30°Cmin-1的加热速率,稳定的光热能力,和机械性能,即使经过20个周期的开-关808nm近红外(NIR)激光辐照(1.0Wcm-2)。此外,M3/G/PAMNDN水凝胶的温度可以在10s内从25°C快速升高到90°C,在聚焦近红外激光照射(56.6Wcm-2)的照射下可以在120s内达到145°C。M/G/PAM水凝胶的高机械性能和光热性能归因于MXene与明胶和PAM聚合物之间形成双网络和均匀的氢键。这项工作为构建具有优异机械性能的光热水凝胶铺平了道路。
    The development of smart hydrogel with excellent mechanical properties and photothermal conversion capability is helpful in expending its application fields. Herein, a MXene/gelatin/polyacrylamide (M/G/PAM) nanocomposite double network (NDN) hydrogel was synthesized by γ-ray radiation technology for the first time. Compared with gelatin/polyacrylamide double network hydrogel, the optimized resultant M3/G/PAM NDN hydrogel shows better mechanical properties (tensile strength of 634 ± 10 kPa, compressive strength of 3.44 ± 0.12 MPa at a compression ratio of 90%). The M3/G/PAM NDN hydrogel exhibits a faster heating rate of 30 °C min-1, stable photothermal ability, and mechanical properties even after 20 cycles of on-off 808 nm near-infrared (NIR) laser irradiation (1.0 W cm-2). Furthermore, the temperature of M3/G/PAM NDN hydrogel can be increased rapidly from 25 °C to 90 °C in 10 s and could reach 145 °C in 120 s under irradiation by focused NIR laser irradiation (56.6 W cm-2). The high mechanical property and photothermal properties of M/G/PAM hydrogel are ascribed to the formation of double network and uniform hydrogen bonding between MXene and gelatin and PAM polymers. This work paves the way for construction of photothermal hydrogels with excellent mechanical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号