Photoelectrochemical method

光电化学方法
  • 文章类型: Journal Article
    通过在R-g-C3N5表面原位自锚定生长MnO2纳米片,制备了棒状石墨碳氮化物@MnO2(R-g-C3N5@MnO2)异质结构。合成的R-g-C3N5@MnO2异质结构作为光活性材料表现出优异的光电化学(PEC)性能,制备的异质结构-适体探针对cTnI表现出敏感的PEC反应。因此,基于R-g-C3N5@MnO2异质结构,开发了PEC方法来检测cTnI。发现在优化条件下,对cTnI的线性响应在0.001-30ng/mL范围内,所提出的传感器的检出限为0.3pg/mL。PEC方法显示稳定的光电流响应长达8个循环,并表现出出色的选择性和灵敏度。PEC方法成功应用于血清样品中cTnI的检测。血清中cTnI检测的回收率达到95.5-104%,相对标准偏差范围为3.20~4.45%。
    Rod-like graphite carbon nitride@MnO2 (R-g-C3N5@MnO2) heterostructure was prepared by in situ self-anchored growth of MnO2 nanosheet on the surface of R-g-C3N5. The synthesized R-g-C3N5@MnO2 heterostructure as photoactive material exhibited excellent photoelectrochemical (PEC) performance, and the prepared heterostructure-aptamer probe displayed sensitive PEC response to cTnI. Therefore, the PEC method was developed to detect cTnI based on the R-g-C3N5@MnO2 heterostructure. It was found that the linear response to cTnI was in the range 0.001-30 ng/mL under optimized conditions, and the detection limit of the proposed sensor was 0.3 pg/mL. The PEC method displays stable photocurrent response up to 8 cycles and exhibited outstanding selectivity and sensitivity. The PEC method was successfully applied to detect cTnI in serum samples. The recoveries of cTnI detection in serums reach 95.5-104%, and the relative standard deviations range from 3.20 to 4.45%.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过一步溶剂热法由BiOI和Bi/BiOI-X(其中x可以是1、2、3或4)制备复合材料,并用于设计铬(VI)的光电化学(PEC)测定。通过X射线衍射对材料的化学组成和形貌进行了表征,X射线光电子能谱,扫描电子显微镜,和透射电子显微镜。UV-visDRS(漫反射光谱)和光致发光的结果表明,与单独的BiOI相比,复合材料具有更高的可见光吸收和更低的电子复合率。光生电子将六价铬还原为三价铬,添加Cr(VI)后,电子的消耗导致光电流密度显着提高。因此,Cr(VI)浓度可以通过监测光电流密度的增加来测量。Bi/BiOI-3材料显示出检测Cr(VI)的最佳性能。该方法具有较宽的线性范围(1至230μM)和0.3μM的低检出限(S/N=3)。它是稳定的,选择性,重现性好,用于加标自来水和湖水样品中亚硝酸盐的测定。基于Bi/BiOI的电化学传感器的示意图,用于测定Cr(VI)。
    Composites were prepared from BiOI and Bi/BiOI-X (where x can be 1, 2, 3, or 4) by a one-step solvothermal method and used to design a photoelectrochemical (PEC) assay for chromium(VI). The chemical composition and morphology of the materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results of UV-vis DRS (Diffuse reflection spectra) and photoluminescence show the composites to have higher visible light absorption and a lower electron recombination rate compared to BiOI alone. Photogenerated electrons reduce hexavalent chromium to trivalent chromium, and the consumption of electrons cause noticeable enhances of the photocurrent density after the addition of Cr(VI). Thus, the Cr(VI) concentration can be measured by monitoring the increase of photocurrent density. The Bi/BiOI-3 material displays the best performance for detecting Cr(VI). The method has a wide linear range (1 to 230 μM) and a low detection limit of 0.3 μM (at S/N = 3). It is stable, selective, reproducible and was applied to the determination of nitrite in spiked tap water and lake water samples. Graphical abstract Schematic presentation of a electrochemical sensor based on Bi/BiOI for the determination of Cr(VI).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    使用蒸汽冷却冷凝系统沉积高质量的本征ZnO薄膜和本征ZnO纳米棒作为扩展栅极场效应晶体管(EGFET)葡萄糖生物传感器的传感膜。在线性范围内操作的所得葡萄糖生物传感器的感测灵敏度为13.4μAmM(-1)cm(-2)。为了提高ZnO基葡萄糖生物传感器的传感灵敏度,利用光电化学方法钝化了ZnO纳米棒的侧壁表面。在相同的测量条件下,具有钝化ZnO纳米棒的基于ZnO的葡萄糖生物传感器的传感灵敏度显着提高到20.33μAmM(-1)cm(-2)。实验结果表明,传感灵敏度的提高是减轻了由悬空键和在ZnO纳米棒的侧壁表面上诱导的表面态引起的费米能级钉扎效应的结果。
    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM(-1) cm(-2). To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM(-1) cm(-2) under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号