Peptide Chain Elongation, Translational

肽链延长,翻译
  • 文章类型: Journal Article
    C9ORF72基因中的六核苷酸重复扩增是肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)的最常见遗传原因。扩增导致多个二肽重复蛋白,其中富含精氨酸的poly-GR蛋白对神经元有很强的毒性,并降低蛋白质合成的速率。我们研究了对蛋白质合成的影响是否会导致神经元功能障碍和变性。我们发现,poly-GR蛋白的表达通过干扰翻译延伸来抑制整体翻译。在iPSC分化的神经元中,伸长率相对较慢的转录本的翻译进一步减慢,停滞不前,通过聚-GR。延长停滞增加了核糖体碰撞,并诱导了由ZAKα介导的核糖毒素应激反应(RSR),从而增加了激酶p38的磷酸化并促进了细胞死亡。敲除ZAKα或药物抑制p38改善了poly-GR诱导的毒性,并改善了来自C9ORF72-ALS/FTD患者的iPSC衍生神经元的存活。我们的发现表明,靶向RSR可能对由C9ORF72重复扩展引起的ALS/FTD患者具有神经保护作用。
    Hexanucleotide repeat expansion in the C9ORF72 gene is the most frequent inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion results in multiple dipeptide repeat proteins, among which arginine-rich poly-GR proteins are highly toxic to neurons and decrease the rate of protein synthesis. We investigated whether the effect on protein synthesis contributes to neuronal dysfunction and degeneration. We found that the expression of poly-GR proteins inhibited global translation by perturbing translation elongation. In iPSC-differentiated neurons, the translation of transcripts with relatively slow elongation rates was further slowed, and stalled, by poly-GR. Elongation stalling increased ribosome collisions and induced a ribotoxic stress response (RSR) mediated by ZAKα that increased the phosphorylation of the kinase p38 and promoted cell death. Knockdown of ZAKα or pharmacological inhibition of p38 ameliorated poly-GR-induced toxicity and improved the survival of iPSC-derived neurons from patients with C9ORF72-ALS/FTD. Our findings suggest that targeting the RSR may be neuroprotective in patients with ALS/FTD caused by repeat expansion in C9ORF72.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子动力学模拟已经成为一套强大的工具,可以解开蛋白质合成过程中核糖体的复杂动力学。该领域的最新进展使模拟能够深入研究核糖体和相关因子的构象重排,为翻译的复杂性提供宝贵的见解。最近模拟的重点是平移延伸,比如tRNA选择,易位,和核糖体头部旋转运动。这些研究为遗传信息如何忠实地翻译成蛋白质提供了至关重要的结构解释。这篇综述概述了有关翻译延伸过程中核糖体构象变化的最新发现,通过分子动力学模拟阐明。
    Molecular dynamics simulations have emerged as a powerful set of tools to unravel the intricate dynamics of ribosomes during protein synthesis. Recent advancements in this field have enabled simulations to delve deep into the conformational rearrangements of ribosomes and associated factors, providing invaluable insights into the intricacies of translation. Emphasis on simulations has recently been on translation elongation, such as tRNA selection, translocation, and ribosomal head-swivel motions. These studies have offered crucial structural interpretations of how genetic information is faithfully translated into proteins. This review outlines recent discoveries concerning ribosome conformational changes occurring during translation elongation, as elucidated through molecular dynamics simulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    eEF2翻译后修饰(PTM)可深刻影响mRNA翻译动力学。然而,eEF2K525三甲基化(eEF2K525me3)的生理功能,由FAM86A酶催化的PTM,是未知的。这里,我们发现,eEF2的FAM86A甲基化调节新生伸长,促进蛋白质合成和肺腺癌(LUAD)的发病机制。FAM86A的主要生理底物是eEF2,对K525me3进行建模以促进易位过程中有效的eEF2核糖体接合。LUAD细胞中FAM86A的消耗导致80S单体积累和mRNA翻译抑制。FAM86A在LUAD中过表达,eEF2K525me3水平通过推进LUAD疾病阶段而增加。FAM86A敲低减弱LUAD细胞增殖,抑制FAM86A-eEF2K525me3轴在体内抑制癌细胞和患者来源的LUAD异种移植物生长。最后,FAM86A消融在KRASG12C驱动的LUAD小鼠模型中强烈减弱肿瘤生长并延长存活。因此,我们的工作揭示了一个eEF2甲基化介导的mRNA翻译延伸调节节点,并将FAM86A作为LUAD的病原体.
    eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新生多肽链可以诱导翻译停滞以调节基因表达。例如大肠杆菌分泌监测(SecM)阻滞肽,其诱导翻译停滞以调节下游编码的SecA的表达,与SecYEG转位子协作以促进蛋白质插入或穿过细胞质膜的ATP酶。在这里,我们介绍了在全长大肠杆菌SecM阻滞肽翻译过程中停滞的核糖体的结构,分辨率为2.0。该结构揭示了SecM通过稳定A位点中的Pro-tRNA来阻止翻译,但是以防止与P位点中的SecM-肽基-tRNA形成肽键的方式。通过分子动力学模拟,我们还提供了有关SecM新生链上的拉力如何缓解SecM介导的翻译停滞的见解。总的来说,此处确定的SecM阻滞和缓解机制也可能适用于多种其他阻滞肽,这些阻滞肽调节在多种细菌谱系中鉴定的蛋白质定位机制的组分.
    Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在假设的RNA世界中,核酶可以作为现代氨酰基-tRNA合成酶(ARSs)给tRNA充电,从而产生了肽的合成以及原始翻译装置的进化。我们以前报道过一种T-boxzyme,Tx2.1,它在柔性体外翻译(FIT)系统中选择性地将起始tRNA与N-生物素基-苯丙氨酸(BioPhe)原位充电,以产生BioPhe起始肽。这里,我们进行了具有延伸能力的T盒酶(elT盒酶)的体外选择,使用对叠氮基-1-苯丙氨酸(PheAZ)作为酰基供体。我们实施了一种新的策略来富集在3'端选择性自氨基酰化的elT-羧酶-tRNA缀合物。其中一个,elT32可以响应于其同源反密码子以反式将PheAZ充电到tRNA上。elT32的进一步进化导致具有增强的氨基酰化活性的elT49。我们已经证明了含有PheAZ的肽在elT-羧酶整合的FIT系统中的翻译,揭示了elT盒酶能够响应定制翻译系统的同源反密码子原位产生PheAZ-tRNA。这项研究,与Tx2.1一起,说明了一系列核酶可以监督氨基酰化并与原始的基于RNA的翻译系统共同进化的情况。
    In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3\'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    参与蛋白质合成的核糖体的停滞可导致新合成蛋白质功能的显著缺陷,从而损害蛋白质稳态。因此,由翻译停滞产生的部分合成的多肽被几种质量控制机制识别和消除。首先,如果翻译延伸反应过早停止,称为核糖体相关质量控制(RQC)的质量控制机制启动新生多肽链的泛素化和随后的蛋白酶体降解。此外,当具有缺陷密码子识别或肽键形成的核糖体在翻译过程中停滞时,一种称为非功能性核糖体RNA衰变(NRD)的质量控制机制会导致功能不良的核糖体降解。在这两种质量控制机制中,E3泛素连接酶选择性识别处于不同翻译停滞状态的核糖体并泛素化特定核糖体蛋白。已经做出了巨大的努力来表征E3泛素连接酶对核糖体“碰撞”或“停滞”的感知,并挽救了随后的核糖体。本文概述了我们目前对核糖体动力学控制和异常翻译质量控制的分子机制和生理功能的理解。
    Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome \'collision\' or \'stalling\' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GGGGCC(G4C2)在C9orf72非编码区的核苷酸重复扩增是肌萎缩性侧索硬化症和额颞叶痴呆的最常见遗传原因。具有这种重复扩增的转录物通过称为重复相关非AUG(RAN)翻译的非规范过程进行二肽重复的翻译。为了确定RAN翻译所需的基本组件,我们成功地概述了G4C2-RAN翻译使用体外重组的翻译系统,包括人为因素,即人类纯净系统。我们的发现最终证明,基本翻译因子的存在足以介导G4C2重复序列的延伸。此外,启动机制以依赖于上限的方式进行,独立于eIF2A或eIF2D。与细胞裂解物介导的RAN翻译相反,更长的G4C2重复增强翻译,我们发现,使用人PURE系统,G4C2重复序列的扩增抑制了翻译延伸。这些结果表明重复RNA本身作为RAN翻译的阻遏物起作用。一起来看,我们利用采用最少因素的重组RAN翻译系统代表了一种独特而有效的方法来阐明RAN翻译机制的复杂性。
    Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5\' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体停顿是包括蛋白质折叠和定位在内的共翻译事件的关键部分。然而,延伸的核糖体停顿会导致核糖体碰撞,导致核糖体拯救途径的激活以及蛋白质和mRNA的周转。虽然这种关系已经为人所知,关于核糖体停滞在定量水平上如何影响翻译持续时间的研究很少。我们采用了一种用于测量伸长时间的方法,并将其用于酿酒酵母中,以量化伸长失速的影响。我们发现,在含有ArgCGA密码子重复诱导的失速的转录本中,Hel2介导的蛋白质表达和mRNA水平的剂量依赖性降低,延长延迟约数分钟。在包含非最佳Leu密码子同义取代的转录物中,蛋白质和mRNA水平下降,以及类似的伸长延迟,但这是通过非Hel2介导的机制发生的。最后,我们发现Dhh1选择性增加蛋白质表达,mRNA水平,和伸长率。这表明尽管延长停滞持续时间相似,但不同的翻译不良的mRNA将激活不同的拯救途径。一起来看,这些结果为监测翻译以及Hel2和Dhh1在介导核糖体暂停事件中的作用提供了新的定量机制。
    Ribosomal pauses are a critical part of cotranslational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, there has been little exploration of how ribosomal stalls impact translation duration at a quantitative level. We have taken a method used to measure elongation time and adapted it for use in Saccharomyces cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to nonoptimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated mRNAs will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N-末端组学领域随着提供N-末端组的全面和无偏见观点的新型方法的发展而不断发展。阴性选择N-末端组学能够鉴定游离和天然修饰的蛋白质N-末端。这里,我们提出了一个简化的协议,结合了两种阴性选择N-末端组学方法,晚期和HYTANE,与使用单一方法相比,N-末端覆盖率增加1.5倍。我们的方案包括两种方法的样品制备和数据分析,可用于研究不同样品的N末端。建议的方法使研究人员能够更详细和准确地理解N末端。
    The field of N-terminomics has been advancing with the development of novel methods that provide a comprehensive and unbiased view of the N-terminome. Negative selection N-terminomics enables the identification of free and naturally modified protein N-termini. Here, we present a streamlined protocol that combines two negative selection N-terminomics methods, LATE and HYTANE, to increase N-terminome coverage by 1.5-fold compared to using a single methodology. Our protocol includes sample preparation and data analysis of both methods and can be applied to studying the N-terminome of diverse samples. The suggested approach enables researchers to achieve a more detailed and accurate understanding of the N-terminome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    mRNA翻译和细胞呼吸之间复杂的相互作用最近被揭示,但是它在人类中的调节在健康或疾病方面的特征很差。癌细胞从根本上重塑生物合成和生物能量途径以维持其异常的生长速率。在这方面,我们已经表明,分子伴侣TRAP1不仅调节呼吸复合物的活性,作为癌基因或肿瘤抑制因子,而且在mRNA翻译调节中也起着伴随的月光作用。在这里,我们确定了所涉及的分子机制,证明TRAP1:i)结合线粒体和胞质核糖体以及翻译延伸因子,ii)减慢平移伸长率,和iii)有利于线粒体附近的局部翻译。我们还提供了证据,证明TRAP1在人组织中与线粒体翻译机制共表达,负责呼吸复合蛋白的合成。总之,我们的结果显示癌细胞代谢调节的复杂性达到了前所未有的水平,强烈表明蛋白质合成和能量代谢之间存在紧密的反馈回路,基于单一分子伴侣在线粒体和胞质翻译中起作用的证明,以及线粒体呼吸。
    A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号