Peptide Chain Elongation, Translational

肽链延长,翻译
  • 文章类型: Journal Article
    eEF2翻译后修饰(PTM)可深刻影响mRNA翻译动力学。然而,eEF2K525三甲基化(eEF2K525me3)的生理功能,由FAM86A酶催化的PTM,是未知的。这里,我们发现,eEF2的FAM86A甲基化调节新生伸长,促进蛋白质合成和肺腺癌(LUAD)的发病机制。FAM86A的主要生理底物是eEF2,对K525me3进行建模以促进易位过程中有效的eEF2核糖体接合。LUAD细胞中FAM86A的消耗导致80S单体积累和mRNA翻译抑制。FAM86A在LUAD中过表达,eEF2K525me3水平通过推进LUAD疾病阶段而增加。FAM86A敲低减弱LUAD细胞增殖,抑制FAM86A-eEF2K525me3轴在体内抑制癌细胞和患者来源的LUAD异种移植物生长。最后,FAM86A消融在KRASG12C驱动的LUAD小鼠模型中强烈减弱肿瘤生长并延长存活。因此,我们的工作揭示了一个eEF2甲基化介导的mRNA翻译延伸调节节点,并将FAM86A作为LUAD的病原体.
    eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新生多肽链可以诱导翻译停滞以调节基因表达。例如大肠杆菌分泌监测(SecM)阻滞肽,其诱导翻译停滞以调节下游编码的SecA的表达,与SecYEG转位子协作以促进蛋白质插入或穿过细胞质膜的ATP酶。在这里,我们介绍了在全长大肠杆菌SecM阻滞肽翻译过程中停滞的核糖体的结构,分辨率为2.0。该结构揭示了SecM通过稳定A位点中的Pro-tRNA来阻止翻译,但是以防止与P位点中的SecM-肽基-tRNA形成肽键的方式。通过分子动力学模拟,我们还提供了有关SecM新生链上的拉力如何缓解SecM介导的翻译停滞的见解。总的来说,此处确定的SecM阻滞和缓解机制也可能适用于多种其他阻滞肽,这些阻滞肽调节在多种细菌谱系中鉴定的蛋白质定位机制的组分.
    Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在假设的RNA世界中,核酶可以作为现代氨酰基-tRNA合成酶(ARSs)给tRNA充电,从而产生了肽的合成以及原始翻译装置的进化。我们以前报道过一种T-boxzyme,Tx2.1,它在柔性体外翻译(FIT)系统中选择性地将起始tRNA与N-生物素基-苯丙氨酸(BioPhe)原位充电,以产生BioPhe起始肽。这里,我们进行了具有延伸能力的T盒酶(elT盒酶)的体外选择,使用对叠氮基-1-苯丙氨酸(PheAZ)作为酰基供体。我们实施了一种新的策略来富集在3'端选择性自氨基酰化的elT-羧酶-tRNA缀合物。其中一个,elT32可以响应于其同源反密码子以反式将PheAZ充电到tRNA上。elT32的进一步进化导致具有增强的氨基酰化活性的elT49。我们已经证明了含有PheAZ的肽在elT-羧酶整合的FIT系统中的翻译,揭示了elT盒酶能够响应定制翻译系统的同源反密码子原位产生PheAZ-tRNA。这项研究,与Tx2.1一起,说明了一系列核酶可以监督氨基酰化并与原始的基于RNA的翻译系统共同进化的情况。
    In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3\'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    GGGGCC(G4C2)在C9orf72非编码区的核苷酸重复扩增是肌萎缩性侧索硬化症和额颞叶痴呆的最常见遗传原因。具有这种重复扩增的转录物通过称为重复相关非AUG(RAN)翻译的非规范过程进行二肽重复的翻译。为了确定RAN翻译所需的基本组件,我们成功地概述了G4C2-RAN翻译使用体外重组的翻译系统,包括人为因素,即人类纯净系统。我们的发现最终证明,基本翻译因子的存在足以介导G4C2重复序列的延伸。此外,启动机制以依赖于上限的方式进行,独立于eIF2A或eIF2D。与细胞裂解物介导的RAN翻译相反,更长的G4C2重复增强翻译,我们发现,使用人PURE系统,G4C2重复序列的扩增抑制了翻译延伸。这些结果表明重复RNA本身作为RAN翻译的阻遏物起作用。一起来看,我们利用采用最少因素的重组RAN翻译系统代表了一种独特而有效的方法来阐明RAN翻译机制的复杂性。
    Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5\' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体停顿是包括蛋白质折叠和定位在内的共翻译事件的关键部分。然而,延伸的核糖体停顿会导致核糖体碰撞,导致核糖体拯救途径的激活以及蛋白质和mRNA的周转。虽然这种关系已经为人所知,关于核糖体停滞在定量水平上如何影响翻译持续时间的研究很少。我们采用了一种用于测量伸长时间的方法,并将其用于酿酒酵母中,以量化伸长失速的影响。我们发现,在含有ArgCGA密码子重复诱导的失速的转录本中,Hel2介导的蛋白质表达和mRNA水平的剂量依赖性降低,延长延迟约数分钟。在包含非最佳Leu密码子同义取代的转录物中,蛋白质和mRNA水平下降,以及类似的伸长延迟,但这是通过非Hel2介导的机制发生的。最后,我们发现Dhh1选择性增加蛋白质表达,mRNA水平,和伸长率。这表明尽管延长停滞持续时间相似,但不同的翻译不良的mRNA将激活不同的拯救途径。一起来看,这些结果为监测翻译以及Hel2和Dhh1在介导核糖体暂停事件中的作用提供了新的定量机制。
    Ribosomal pauses are a critical part of cotranslational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, there has been little exploration of how ribosomal stalls impact translation duration at a quantitative level. We have taken a method used to measure elongation time and adapted it for use in Saccharomyces cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to nonoptimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated mRNAs will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    mRNA翻译和细胞呼吸之间复杂的相互作用最近被揭示,但是它在人类中的调节在健康或疾病方面的特征很差。癌细胞从根本上重塑生物合成和生物能量途径以维持其异常的生长速率。在这方面,我们已经表明,分子伴侣TRAP1不仅调节呼吸复合物的活性,作为癌基因或肿瘤抑制因子,而且在mRNA翻译调节中也起着伴随的月光作用。在这里,我们确定了所涉及的分子机制,证明TRAP1:i)结合线粒体和胞质核糖体以及翻译延伸因子,ii)减慢平移伸长率,和iii)有利于线粒体附近的局部翻译。我们还提供了证据,证明TRAP1在人组织中与线粒体翻译机制共表达,负责呼吸复合蛋白的合成。总之,我们的结果显示癌细胞代谢调节的复杂性达到了前所未有的水平,强烈表明蛋白质合成和能量代谢之间存在紧密的反馈回路,基于单一分子伴侣在线粒体和胞质翻译中起作用的证明,以及线粒体呼吸。
    A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质合成对于支持体内平衡至关重要,因此,在细胞对有害环境的反应过程中必须受到高度调节。翻译的所有阶段都容易受到压力下的调节,然而,在启动之外的翻译调节所涉及的机制才刚刚开始阐明。方法学上的进步使得在控制平移伸长方面有了重要的发现,强调其在翻译抑制和应激反应蛋白合成中的重要作用。在这篇文章中,我们讨论了核糖体暂停和碰撞介导的延伸控制机制以及tRNA和延伸因子的可用性的最新发现。我们还讨论了伸长如何与不同的平移控制模式相交,进一步支持细胞活力和基因表达重编程。最后,我们强调了其中一些途径是如何可逆调节的,强调应激反应过程中翻译控制的动力学。对压力下的翻译调节的全面理解将产生蛋白质动力学的基本知识,同时开辟新的途径和策略来克服失调的蛋白质产生和细胞对压力的敏感性。
    Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质合成是基因表达的基本步骤,在延伸步骤中调节mRNA翻译,成为塑造细胞蛋白质组的重要调节节点。在这种情况下,eEF1A(真核延伸因子1A)上的五个不同的赖氨酸甲基化事件,一种基本的非核糖体延伸因子,建议影响mRNA翻译延伸动力学。然而,亲和力工具的缺乏阻碍了人们充分理解eEF1A赖氨酸甲基化如何影响蛋白质合成的进展.在这里,我们开发和表征了一套选择性抗体,以研究eEF1A甲基化,并提供老化组织中甲基化水平下降的证据。通过质谱法测定各种细胞系中eEF1A的甲基状态和化学计量显示适度的细胞间变异性。我们还通过Western印迹分析发现,单个eEF1A特异性赖氨酸甲基转移酶(KMT)的敲低导致同源赖氨酸甲基化事件的耗尽,并表明不同位点之间的活跃串扰。Further,我们发现这些抗体在免疫组织化学(IHC)应用中具有特异性。最后,抗体工具包的应用表明,一些eEF1A甲基化事件在老年肌肉组织中减少。我们的研究共同提供了利用甲基状态和序列选择性抗体试剂加速发现eEF1A甲基化相关功能的路线图,并表明eEF1A甲基化的作用。通过蛋白质合成调节,在衰老生物学中。
    Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管一些核糖体蛋白旁系同源物以组织特异性方式表达,这些蛋白质是如何影响翻译的,以及为什么它们只在某些组织中被需要,目前还不清楚。这里我们展示了RPL3L,在心脏和骨骼肌中特异性表达的RPL3的同系物,影响平移伸长动力学。RPL3L敲除雄性小鼠中含有RPL3L的核糖体的缺乏导致心脏收缩力受损。发现RPL3L缺陷型心脏中mRNA密码子的核糖体占用发生了改变,这种变化与过表达RPL3L的成肌细胞呈负相关。与含RPL3的经典核糖体相比,含RPL3L的核糖体不易发生碰撞。尽管含有RPL3L的核糖体的丢失改变了整个转录组的翻译延伸动力学,对于与心肌收缩和扩张型心肌病相关的转录本,其效果最明显,编码蛋白质的丰度相应降低。我们的结果为组织特异性翻译调节的机制和生理相关性提供了进一步的见解。
    Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无义突变会引发过早的翻译终止,并经常引起流行和罕见的遗传疾病。因此,非计划终止密码子的药理学抑制是一种有吸引力的治疗选择,具有很高的临床相关性.在分子水平上,核糖体通过终止密码子继续翻译的能力称为终止密码子连读(SCR)。引起疾病的过早终止密码子(PTC)的SCR是最小的,但小分子干预,例如用氨基糖苷类抗生素治疗,可以提高其频率。在这次审查中,我们总结了目前对翻译终止的理解(包括在PTC和同源终止密码子),并强调了最近发现的影响其保真度的途径.我们描述了识别和读取PTC的机制,并报告了目前在临床前研究和临床试验中探索的SCR诱导化合物。最后,我们回顾了在不同疾病背景下个性化无义抑制治疗的持续尝试,包括遗传性皮肤状况大疱性表皮松解症。
    Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号