PI3K, Phosphoinositide 3-kinase

PI3K,磷酸肌醇 3 - 激酶
  • 文章类型: Journal Article
    瞬时受体电位(TRP)通道是钙(Ca2+)通透性通道的主要类型,这些相关的跨膜和细胞内TRP通道以前被认为主要与心血管和神经元系统的调节有关。如今,然而,越来越多的证据表明,这些TRP通道也负责肿瘤发生和发展,诱导肿瘤侵袭和转移。然而,TRP通道在恶性肿瘤中的总体潜在机制和可能的信号转导途径可能仍然难以捉摸.因此,在这次审查中,我们专注于TRP通道与肿瘤的显着特征之间的联系,例如多药耐药(MDR),转移,凋亡,扩散,逃避免疫监视,以及相关肿瘤微环境的改变。此外,我们还讨论了相关TRP通道在各种形式癌症中的表达和相关抑制剂的疗效。还介绍了各种作用机制的抗癌药物的化学敏感性和潜在的临床应用。此外,对于这种类型的钙通道的干预,提供可能的新的治疗方法来对抗恶性肿瘤将是有启发性的。
    Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors\' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤免疫治疗已成为新一代抗肿瘤治疗,但是它的适应症仍然集中在对免疫系统敏感的几种类型的肿瘤上。因此,扩大适应证、提高疗效的有效策略成为肿瘤免疫治疗进一步发展的关键要素。据报道,天然产物对癌症免疫疗法有这种作用,包括癌症疫苗,免疫检查点抑制剂,和过继免疫细胞疗法。其机制主要归因于肿瘤免疫抑制微环境的重塑,是帮助肿瘤避免免疫系统和癌症免疫疗法识别和攻击的关键因素。因此,这篇综述总结并总结了据报道可改善癌症免疫治疗的天然产物,并研究了其机制。我们发现皂苷,多糖,黄酮类化合物主要是三类天然产物,这反映了通过逆转肿瘤免疫抑制微环境与癌症免疫治疗相结合的显着效果。此外,这篇综述还收集了有关纳米技术用于改善天然产物缺点的研究。所有这些研究都显示了天然产物在癌症免疫疗法中的巨大潜力。
    Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    巨肽受体介导的内吞作用参与庆大霉素(GM)摄取的关键作用,积累,和毒性。在这项研究中,我们研究了孟鲁司特(MLK)对megalin表达/内吞功能抗GM肾毒性的潜在影响.雄性Wistar大鼠每天分剂量施用GM(120mg/kg;i.p.),持续4小时;30mg/kg/hr;持续7天。MLK(30mg/kg/天)在之前7天口服给药,然后与GM同时给药。megalin和氯化物通道5(ClC-5)的蛋白表达;megalin内吞功能的重要调节因子之一;通过Western印迹测定。此外,用异硫氰酸荧光素(FITC-BSA)标记的牛血清白蛋白被摄取到近端肾小管上皮细胞中,以评估megalin的内吞功能.此外,肾功能生物标志物(Cr,BUN,GFR,估计了KIM-1,胱抑素C)和凋亡标志物(p-AKT1,裂解的caspase-3)。与MLK共同处理下调了ClC-5的表达,导致megalin向质膜的再循环减少,减少表达,因此,内吞功能受损,这可以通过近端肾小管上皮细胞对FITC-BSA的摄取减少来证明。凋亡执行者裂解的caspase-3的蛋白质表达显着降低,而抗凋亡p-AKT1升高。肾功能和组织学发现的改善证实了这些结果。我们的数据表明,MLK可能干扰megalin表达/内吞功能,这可能归因于ClC-5蛋白表达的下调。这最终减少了GM给药后的肾细胞凋亡并改善了肾功能,而不会影响GM的抗菌活性。因此,减少ClC-5的表达和MLK对megalin表达/内吞功能的干扰可能是抗GM肾毒性的有效策略。
    Megalin receptor-mediated endocytosis participates a crucial role in gentamicin (GM) uptake, accumulation, and toxicity. In this study, we investigated the potential effects of montelukast (MLK) on megalin expression/endocytic function against GM nephrotoxicity. Male Wistar rats were administered GM (120 mg/kg; i.p.) daily in divided doses along 4 hr; 30 mg/kg/hr; for 7 days. MLK (30 mg/kg/day) was orally administered 7 days before and then concurrently with GM. The protein expressions of megalin and chloride channel-5 (ClC-5); one of the essential regulators of megalin endocytic function; were determined by Western blotting. Besides, the endocytic function of megalin was evaluated by the uptake of bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA) into proximal tubular epithelial cells. Moreover, kidney function biomarkers (Cr, BUN, GFR, KIM-1, cystatin-C) and apoptosis markers (p-AKT1, cleaved caspase-3) were estimated. Co-treatment with MLK downregulated ClC-5 expression leading to reduced recycling of megalin to the plasma membrane, reduced expression, and so impaired endocytic function that was evidenced by reduced uptake of FITC-BSA in proximal tubular epithelial cells. The protein expression of the apoptotic executioner cleaved caspase-3 was significantly reduced, while that of the antiapoptotic p-AKT1 was elevated. These results were confirmed by the improvement of kidney functions and histological findings. Our data suggest that MLK could interfere with megalin expression/endocytic function that could be attributed to downregulation of ClC-5 protein expression. That eventually reduces renal cell apoptosis and improves kidney functions after GM administration without affecting the antibacterial activity of GM. Therefore, reduced expression of ClC-5 and interference with megalin expression/endocytic function by MLK could be an effective strategy against GM nephrotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肝细胞癌(HCC)是一种侵袭性人类癌症,在全球范围内发病率不断上升。已经做出了许多努力来探索治疗HCC的药物疗法。如靶向酪氨酸激酶抑制剂,基于免疫的疗法和联合化疗。然而,目前的策略存在局限性,包括例如化学抗性。肿瘤的启动和进展是由代谢的重新编程驱动的,特别是在HCC发展过程中。最近,代谢相关脂肪性肝病(MAFLD),非酒精性脂肪性肝病(NAFLD)新命名法的重新评估,表明对肝脏疾病发病机制中代谢的认识日益提高,包括HCC,从而提出了针对异常代谢的肝癌治疗新策略。在这次审查中,我们通过突出葡萄糖的代谢目标来介绍方向,脂肪酸,氨基酸和谷氨酰胺代谢,适用于HCC药物干预。我们还总结和讨论了目前针对HCC治疗过程中代谢失调的药物和研究。此外,讨论了肝癌靶向代谢治疗的发现和发展的机遇和挑战。
    Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷酸肌醇3-激酶γ(PI3Kγ)被认为是治疗多种疾病的有前景的药物靶点。以及I类PI3K同工型的不同生理作用(α,β,δ,和γ)强调了同工型选择性在PI3Kγ抑制剂开发中的重要性。然而,PI3K家族的高度结构保守性使得开发选择性PI3Kγ抑制剂面临巨大挑战。
    开发了具有多个PI3Kγ蛋白结构的新型基于机器学习的虚拟筛选,以发现新型PI3Kγ抑制剂。
    使用虚拟筛选模型筛选了大型化学品数据库,然后对排名靠前的化合物进行了一系列的生物评价,这导致了JN-KI3的发现。理论研究揭示了JN-KI3对PI3Kγ的选择性抑制机制。
    通过虚拟筛选确定了49个命中,无细胞酶研究发现,JN-KI3在低至3,873nM的浓度下选择性抑制PI3Kγ,但对IA类PI3K没有抑制作用,导致对血液癌细胞的选择性细胞毒性。同时,JN-KI3有效阻断PI3K信号,最终导致低浓度血液细胞系明显的凋亡。最后,PI3Kγ的关键残基和JN-KI3的结构特征,这两者都会影响γ同工型选择性抑制,以系统的理论研究为重点。
    开发的虚拟筛选模型强烈地显示了寻找新型PI3Kγ抑制剂的稳健性。JN-KI3对血液肿瘤细胞具有特异性细胞毒性,并显著促进与PI3K信号抑制相关的细胞凋亡,其中描述了PI3Kγ作为血液肿瘤治疗的潜在靶标。理论结果表明,与大多数报道的PI3Kγ抑制剂相比,与JN-KI3相互作用的关键残基不太常见,表明JN-KI3作为选择性PIK3γ抑制剂具有新的结构特征。
    Phosphoinositide 3-kinase gamma (PI3Kγ) has been regarded as a promising drug target for the treatment of various diseases, and the diverse physiological roles of class I PI3K isoforms (α, β, δ, and γ) highlight the importance of isoform selectivity in the development of PI3Kγ inhibitors. However, the high structural conservation among the PI3K family makes it a big challenge to develop selective PI3Kγ inhibitors.
    A novel machine learning-based virtual screening with multiple PI3Kγ protein structures was developed to discover novel PI3Kγ inhibitors.
    A large chemical database was screened using the virtual screening model, the top-ranked compounds were then subjected to a series of bio-evaluations, which led to the discovery of JN-KI3. The selective inhibition mechanism of JN-KI3 against PI3Kγ was uncovered by a theoretical study.
    49 hits were identified through virtual screening, and the cell-free enzymatic studies found that JN-KI3 selectively inhibited PI3Kγ at a concentration as low as 3,873 nM but had no inhibitory effect on Class IA PI3Ks, leading to the selective cytotoxicity on hematologic cancer cells. Meanwhile, JN-KI3 potently blocked the PI3K signaling, finally led to distinct apoptosis of hematologic cell lines at a low concentration. Lastly, the key residues of PI3Kγ and the structural characteristics of JN-KI3, which both would influence γ isoform-selective inhibition, were highlighted by systematic theoretical studies.
    The developed virtual screening model strongly manifests the robustness to find novel PI3Kγ inhibitors. JN-KI3 displays a specific cytotoxicity on hematologic tumor cells, and significantly promotes apoptosis associated with the inhibition of the PI3K signaling, which depicts PI3Kγ as a potential target for the hematologic tumor therapy. The theoretical results reveal that those key residues interacting with JN-KI3 are less common compared to most of the reported PI3Kγ inhibitors, indicating that JN-KI3 has novel structural characteristics as a selective PIK3γ inhibitor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:对ECM的功能多功能性和动态特性的更深入了解提高了对癌症生物学的理解。翻译意义:这项工作提供了ECM的重要性,以开发更多的模拟乳腺癌模型的深入视图,旨在重建肿瘤微环境的组成部分和架构。特别关注来自组织和细胞培养的脱细胞基质,在采购和应用中,因为他们在癌症研究和制药领域取得了巨大的成功。摘要:细胞外基质(ECM)越来越被认为是细胞行为和对乳腺癌(BC)治疗反应的主要调节因子。在BC进展期间,乳腺ECM在组成和组织上被重塑和改变。积累的证据表明,ECM的组成和力学的变化,由肿瘤-基质相互作用以及ECM重塑酶协调,积极参与BC的进展和转移。了解特定的ECM成分如何调节致瘤过程已导致对开发基于生物材料的仿生ECM模型以概括关键肿瘤特征的兴趣增加。脱细胞ECMs(dECMs)已成为有前途的体外3D肿瘤模型,其在加工和应用方面的最新进展可能成为BC研究和制药业卓越的生物材料。这篇综述详细介绍了ECM在BC进展中的贡献,并强调了基于dECM的生物材料作为有前途的个性化肿瘤模型的应用,可以更准确地模拟BC的致瘤机制和对治疗的反应。这将允许设计适合每个肿瘤的特定特征的靶向治疗方法,这将对应用于BC患者的精准医学产生重大影响。
    BACKGROUND: A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. Abstract: The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨形态发生蛋白(BMPs)是胚胎发生和出生后稳态的重要生长调节剂。它们的严格调节对于成年生物体的成功胚胎发育以及组织稳态至关重要。天然细胞外生物拮抗剂对BMP的抑制作用代表了BMP生长因子调节的最深入研究的机制概念。它被证明对许多发展计划至关重要,包括建立背腹轴和器官形成所需的胚层规格和时空梯度。BMP拮抗剂对细胞外基质稳态的重要性由其突变失活引起的许多人类结缔组织疾病说明。这里,我们将重点关注已知的靶向BMP拮抗剂与ECM的功能性相互作用,并讨论这些相互作用如何影响BMP拮抗剂活性。此外,我们将概述当前的概念,并研究在发展和疾病背景下调节BMP抑制剂功能的分子机制。
    Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED: The Bruton\'s Tyrosine Kinase Inhibitor ibrutinib is associated with ventricular arrhythmia (VA) and sudden death. However, the pro-arrhythmic electrophysiological dysregulation that results from ibrutinib with age and cardiovascular disease is unknown.
    UNASSIGNED: This study sought to investigate the acute effects of ibrutinib on left ventricular (LV) VA vulnerability, cytosolic calcium dynamics, and membrane electrophysiology in old and young spontaneous hypertensive rats (SHRs).
    UNASSIGNED: Langendorff-perfused hearts of young (10 to 14 weeks) and old (10 to 14 months) SHRs were treated with ibrutinib (0.1 μmol/l) or vehicle for 30 min. Simultaneously, LV epicardial action potential and cytosolic calcium transients were optically mapped following an incremental pacing protocol. Calcium and action potential dynamics parameters were analyzed. VA vulnerability was assessed by electrically inducing ventricular fibrillations (VFs) in each heart. Western blot analysis was performed on LV tissues.
    UNASSIGNED: Ibrutinib treatment resulted in higher vulnerability to VF in old SHR hearts (27.5 ± 7.5% vs. 5.7 ± 3.7%; p = 0.026) but not in young SHR hearts (8.0 ± 4.9% vs. 0%; p = 0.193). In old SHR hearts, following ibrutinib treatment, action potential duration (APD) alternans (p = 0.008) and APD alternans spatial discordance (p = 0.027) were more prominent. Moreover, calcium transient duration 50 was longer (p = 0.032), calcium amplitude alternans ratio was significantly lower (p = 0.001), and time-to-peak of calcium amplitude was shorter (p = 0.037). In young SHR hearts, there were no differences in calcium and APD dynamics.
    UNASSIGNED: Ibrutinib-induced VA is associated with old age in SHR. Acute dysregulation of calcium and repolarization dynamics play important roles in ibrutinib-induced VF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    代谢综合征(MS)是指以下至少三种医疗状况的聚集:高血压,腹部肥胖,高血糖症,高密度脂蛋白水平低,和高血清甘油三酯。MS与多种疾病有关,包括肥胖,糖尿病,胰岛素抵抗,心血管疾病,血脂异常,或非酒精性脂肪性肝病。仍然需要改善MS的治疗策略。最重要的危险因素是饮食模式,遗传学,老年,缺乏锻炼,被破坏的生物学,药物使用,过度饮酒,但MS的病理生理学尚未完全确定。韩国红参(KRG)是指蒸/干人参,传统上与有益效果相关,如抗炎,抗疲劳,抗肥胖,抗氧化剂,和抗癌作用。KRG在传统医学中经常被用于治疗多种代谢疾病。本文综述了KRG在MS及肥胖等相关疾病中的作用。心血管疾病,胰岛素抵抗,糖尿病,血脂异常,基于实验研究和临床研究的非酒精性脂肪性肝病。
    Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号