Membrane biophysics

膜生物物理学
  • 文章类型: Journal Article
    膜重塑是一个基本的细胞过程,对生理功能至关重要,例如信号传导,膜融合和细胞迁移。四天冬蛋白(TSPAN)是对膜重塑事件具有重要意义的跨膜蛋白。在这些事件中,已知TSPAN与自身以及其他蛋白质和脂质相互作用;然而,它们在控制膜动力学中的作用机制尚未完全了解。由于这些蛋白质跨越膜,膜的性质,如刚性,曲率和张力会影响他们的行为。在这篇评论中,我们总结了最近的研究,探讨了TSPAN在膜重塑过程中的作用,并强调了TSPAN介导其相互作用和定位的独特结构特征。Further,我们强调了膜曲率对TSPAN分布和膜结构域形成的影响,并描述了这些行为如何影响细胞功能。这篇评论提供了关于TSPAN在膜重塑过程中的多方面功能的全面观点,并可以帮助读者了解控制细胞膜动力学的复杂分子机制。
    Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膜脂广泛调节电压门控钾通道(KV)的激活门控,然而,关于神经酰胺和葡萄糖神经酰胺作用的机制,包括哪些结构元件是主要的分子内靶标,以及是否有任何间接的贡献,膜生物物理学相关机制的作用。我们使用能够记录电流和荧光信号的双电极电压钳荧光法,在将MTS-TAMRA荧光团连接到引入VSD细胞外S3-S4环的半胱氨酸后,同时监测KV1.3离子通道的孔域(PD)和电压传感器域(VSD)的运动。我们观察到电导-电压(G-V)关系向右移动,响应于用C16-神经酰胺(Cer)或C16-葡萄糖神经酰胺(GlcCer)加载膜,电流激活动力学较慢,电流幅度降低。分析VSD运动时,只有Cer引起荧光信号-电压(F-V)关系的右移,并减慢了荧光激活动力学,而GlcCer没有发挥这样的作用。这些结果指出了Cer主要针对VSD的独特作用机制,而GlcCer只有KV1.3的PD。使用环境敏感的探针和基于荧光的方法,我们发现Cer和GlcCer同样增加了内部的分子顺序,双层的疏水区域,然而,Cer在膜-水界面处诱导强大的分子重组。我们建议在最外面的膜层中这种独特的有序效应,其中发生了涉及S4顶部向外滑动的主要VSD重排,可以解释Cer的VSD靶向机制,这对GlcCer不可用。
    Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解生物分子的热力学和动力学特性需要阐明其复杂的能量景观。能源景观的不连通性图分析提供了一个框架,用于将多维景观映射到二维表示上,同时保留了能源景观的关键特征。一些研究表明,分离图的结构或形状与蛋白质和核酸分子的功能直接相关。在这次审查中,我们讨论了势能面的不连通性分析如何扩展到脂质分子,以收集有关膜组织的重要信息。不连通性图的形状可用于预测多组分脂质双层的侧向组织。我们希望这篇综述鼓励膜生物物理学家常规使用不连通性图来预测脂质的侧向组织。
    Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物膜内的质子回路,自然生物能量系统的基础,受到不同生物膜的脂质组成的显着影响。在这项研究中,我们研究了混合脂质膜成分对膜表面质子转移(PT)特性的影响。我们跟踪从束缚探针到膜的激发态PT(ESPT)过程,其中PT的时间尺度和长度尺度与生物能量系统相关。在ESPT期间可能发生两个过程:在短时间尺度下从探针到膜的初始PT,然后是膜上探针周围的解离质子扩散,以及在更长的时间尺度上与探针可能的宝石重组。这里,我们使用由磷脂酰胆碱(PC)和磷脂酸(PA)的混合物组成的膜。我们表明,ESPT特性的变化与脂质混合物的浓度无关;在PC中PA的低浓度下,我们发现膜是一个差的质子受体。分子动力学模拟表明,在这种特定的脂质混合物中,膜的结构更加结构化,缺陷最少。因此,我们认为膜的结构是促进PT的重要因素。我们进一步表明,膜的组成会影响探针周围的双晶质子扩散,然而,在几十纳秒的时间尺度上,在PA膜中,解离的质子大多横向限制在膜平面上,在PC中,扩散受到膜的限制较少。
    Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with timescales and length scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at a low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture, with the least number of defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a timescale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先兆子痫,病因不明的妊娠高血压疾病,作为心血管疾病(CVD)的模型进行了深入的研究,这不仅是由于多种共同的病理因素,而且还因为在CVD中数十年发展的变化在先兆子痫中出现并在几天内解决。受先兆子痫影响的人及其后代经历CVD的终生风险增加。在系统层面,先兆子痫的特征是细胞增加,膜,和血液胆固醇水平;然而,胆固醇依赖性信号,如规范的Wnt/βcatenin,刺猬,和内皮型一氧化氮合酶,下调,表明胆固醇缺乏,胆固醇合成和外排上调。先兆子痫中与缺氧相关的信号似乎也与胎盘中缺氧诱导因子的增加矛盾,但胎盘绒毛空间中母体血液中的氧气可测量地增加。这篇综述探讨了过量的全身性胆固醇和胆固醇依赖性信号缺乏的分子机制,这些机制可能是由于饮食中的脂质变化和环境膜调节剂导致先兆子痫特征的细胞缺氧而引起的。
    Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质囊泡的生物物理特性对其稳定性和完整性非常重要,当这些囊泡用于药物输送时,控制性能的关键参数。囊泡性质由用于形成囊泡的脂质的组成决定。然而,对于给定的脂质成分,它们也可以通过将聚合物束缚到膜来定制。通常,像聚乙二醇这样的合成聚合物被用来增加囊泡的稳定性,但是在这种情况下使用多糖的探索要少得多。这里,我们报道了一种通过将脂质囊泡与胆固醇结合而使多糖功能化的一般方法。我们将多糖掺入巨大的单层囊泡(GUV)的外膜小叶上,并使用微量移液管抽吸法研究其对膜力学的影响。我们发现糖脂官能化的存在产生了具有流体样的膜的GUV的意外软化。相比之下,用聚乙二醇官能化GUV不会降低其拉伸模量。这项工作提供了研究类似于细胞糖萼的多糖的膜结合网的潜在手段;此外,它可用于调整药物输送载体的机械性能。
    The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CarlosGutiérrez-Merino教授,在复杂的生物膜领域工作的杰出科学家,为该领域做出了重要的理论和实验贡献。与Singer和Nicolson的流体镶嵌模型的发展同时,Förster共振能量转移(FRET)方法已成为研究膜中分子相互作用的宝贵工具,提供1-10nm范围内的结构见解,并在不断发展的膜结构观点中保持重要。在过去的几十年里,Gutiérrez-Merino\的工作涵盖了FRET领域的多个方面,他的贡献在定量膜生物学方面取得了重大进展。他最近的实验工作将FRET的基础概念扩展到高分辨率细胞成像。始于1980年代后期,Gutiérrez-Merino与作者之间的一系列合作涉及研究访问和联合调查,重点是烟碱乙酰胆碱受体及其与膜脂质的关系,培养持久的友谊。
    Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino\'s work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜内蛋白酶(IPs)水解脂质膜中的肽。IPs参与许多细胞途径,包括免疫应答和监测,和胆固醇的生物合成,它们被病毒利用进行复制。尽管它们在生物学中具有广泛的重要性,如何在细胞中调节活性以在正确的位置和正确的时间控制蛋白质成熟和特定生物活性肽的释放,特别是对于膜内天冬氨酰蛋白酶(IAP)亚型。在分子生化水平上,不同的IAP同源物可以切割非生物底物,并且在仅为一个IAP鉴定的近150个底物中没有序列识别基序,早老素-1,γ-分泌酶的催化成分,以参与与阿尔茨海默病相关的淀粉样β斑块的产生而闻名。在这里,我们使用了基于凝胶的测定与定量质谱和基于FRET的动力学测定相结合,以探测产甲烷菌MethanoculleusmarisnigriJR1的早老素同系物的裂解谱,作为周围脂质模拟环境的函数,洗涤剂胶束或双胶束。我们选择了四种生物IAP底物,这些底物以前没有经历过广泛的裂解分析,即,丙型肝炎病毒的病毒核心蛋白,经典猪瘟病毒的病毒核心蛋白,Notch-1的跨膜节段和酪氨酸受体激酶ErbB4。我们的研究表明,在平均疏水性较低的位置,底物的裂解倾向以及脂质环境在调节动力学特性方面的一致作用。
    Intramembrane proteases (IPs) hydrolyze peptides in the lipid membrane. IPs participate in a number of cellular pathways including immune response and surveillance, and cholesterol biosynthesis, and they are exploited by viruses for replication. Despite their broad importance across biology, how activity is regulated in the cell to control protein maturation and release of specific bioactive peptides at the right place and right time remains largely unanswered, particularly for the intramembrane aspartyl protease (IAP) subtype. At a molecular biochemical level, different IAP homologs can cleave non-biological substrates, and there is no sequence recognition motif among the nearly 150 substrates identified for just one IAP, presenilin-1, the catalytic component of γ-secretase known for its involvement in the production of amyloid-β plaques associated with Alzheimer disease. Here we used gel-based assays combined with quantitative mass spectrometry and FRET-based kinetics assays to probe the cleavage profile of the presenilin homolog from the methanogen Methanoculleus marisnigri JR1 as a function of the surrounding lipid-mimicking environment, either detergent micelles or bicelles. We selected four biological IAP substrates that have not undergone extensive cleavage profiling previously, namely, the viral core protein of Hepatitis C virus, the viral core protein of Classical Swine Fever virus, the transmembrane segment of Notch-1, and the tyrosine receptor kinase ErbB4. Our study demonstrates a proclivity toward cleavage of substrates at positions of low average hydrophobicity and a consistent role for the lipid environment in modulating kinetic properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在生物学中,膜是分离和空间组织细胞反应系统的关键结构。它们在细胞周期中丰富的动力学和转化是由特定的膜靶向分子机制协调的,其中许多机制通过能量耗散来运作。同样,由光驱动的人造分子旋转马达以前对细胞系统显示出巨大的影响,但是它们在脂膜上和脂膜内的物理作用仍未被探索。在这里,我们系统地研究了旋转分子马达对定义明确的生物膜系统的影响,专注于支持的脂质双层(SLB)和巨大的单层囊泡(GUV)。值得注意的是,我们观察到这些系统在电机辐照时发生了戏剧性的机械转变,指示电机引起的膜膨胀。我们系统地探讨了几个因素对这一现象的影响,如电机浓度和膜组成,发现特别是,膜流动性在运动引起的变形中起着至关重要的作用。同时,仅观察到局部加热和单线态氧产生的微小贡献。最值得注意的是,我们发现,只要保持辐照,在电机的影响下,膜面积的膨胀就会持续,系统保持不平衡。总的来说,这项研究有助于全面了解分子马达如何与生物膜相互作用,阐明在存在这些非凡的分子机器的情况下,控制膜响应和形状转变的多方面因素,从而支持它们在化学生物学中的未来应用。本文受版权保护。保留所有权利。
    Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的25年里,被称为室温离子液体(IL)的复杂有机盐的巨大家族由于其潜在的应用而受到越来越多的关注。IL由有机阳离子和有机或无机阴离子组成,并且具有一些有趣的特性,例如低蒸气压和在室温下为液体。一些生物学研究标记了它们的中高(cyto)毒性。毒性是,然而,也是亲和力的同义词,这促进了一系列旨在利用生物纳米医学中的IL的生物物理和化学物理研究,药物输送,药理学,和生物纳米技术。其中一些研究集中在IL和脂质膜之间的相互作用,旨在确定它们相互作用背后的微观机制。这是本次审查工作的重点。这些研究已经在从1-脂质到5-脂质系统的各种不同的脂质双层系统上进行,也在细胞提取的膜上。它们是在不同的化学物理条件下进行的,并使用了许多不同的方法,包括原子力显微镜,中子和X射线散射,动态光散射,差示扫描量热法,表面石英微天平,核磁共振,共聚焦荧光显微镜,和分子动力学模拟。“2023年MichèleAuger奖”评审工作的目的是为读者提供这个迷人的研究领域的最新概述,“IL满足脂质双层(又名生物膜),“目的是进一步推动它,并扩大其跨学科的边缘,使其在药理学中具有新的高影响力的想法/应用,药物输送,生物医学,和生物纳米技术。
    In the past 25 years, a vast family of complex organic salts known as room-temperature ionic liquids (ILs) has received increasing attention due to their potential applications. ILs are composed by an organic cation and either an organic or inorganic anion, and possess several intriguing properties such as low vapor pressure and being liquid around room temperature. Several biological studies flagged their moderate-to-high (cyto)-toxicity. Toxicity is, however, also a synonym of affinity, and this boosted a series of biophysical and chemical-physical investigations aimed at exploiting ILs in bio-nanomedicine, drug-delivery, pharmacology, and bio-nanotechnology. Several of these investigations focused on the interaction between ILs and lipid membranes, aimed at determining the microscopic mechanisms behind their interaction. This is the focus of this review work. These studies have been carried out on a variety of different lipid bilayer systems ranging from 1-lipid to 5-lipids systems, and also on cell-extracted membranes. They have been carried out at different chemical-physical conditions and by the use of a number of different approaches, including atomic force microscopy, neutron and X-ray scattering, dynamic light scattering, differential scanning calorimetry, surface quartz microbalance, nuclear magnetic resonance, confocal fluorescence microscopy, and molecular dynamics simulations. The aim of this \"2023 Michèle Auger Award\" review work is to provide the reader with an up-to-date overview of this fascinating research field where \"ILs meet lipid bilayers (aka biomembranes),\" with the aim to boost it further and expand its cross-disciplinary edges towards novel high-impact ideas/applications in pharmacology, drug delivery, biomedicine, and bio-nanotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号