M23

M23
  • 文章类型: Journal Article
    抗菌素耐药性构成了重大的全球威胁,达到世界卫生组织报告的危险高水平。新的抗病机制的出现和迅速蔓延,再加上近几十年来缺乏有效的治疗方法,每年导致数千人死于由耐药微生物引起的感染。因此,迫切需要开发能够对抗抗生素抗性细菌的新化合物。具有有效杀菌作用的一类有希望的分子是肽聚糖水解酶。以前,我们克隆并表征了粪肠球菌EnpA(EnpACD)蛋白的M23催化域的生化特性。与M23家族中的其他酶不同,EnpACD表现出广泛的特异性。然而,其活性在低离子强度条件下受到限制。在这项研究中,我们介绍了包含EnpACD与三个不同的SH3b细胞壁结合域融合的三种嵌合酶的工程。这些嵌合体表现出对环境条件的增强的耐受性和在牛和人血清中的持续活性。此外,我们的发现表明,SH3b结构域的添加影响嵌合酶的活性,从而扩大其在对抗抗菌素耐药性方面的潜在应用。这些研究表明,将SH3b结合域添加到EnpACD导致产生对离子强度和pH值具有更广泛耐受性的嵌合体。使他们能够在更广泛的条件下保持活跃。这种方法为获得具有定制特性的抗菌酶提供了一种相对简单的方法,并强调了具有增强功能的蛋白质工程的潜力。有助于有效解决抗菌素耐药性的持续努力。
    Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins\' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钩端螺旋体病,由螺旋体钩端螺旋体引起的全球重新出现的人畜共患病,具有严重的人类和兽医影响。发现具有LytM(肽酶M23)和LysM结构域的细胞壁水解酶(LIC_10271)与各种病原菌有关。这些结构域调节对细胞外基质和生物膜成分的影响,促进细胞壁重塑和病原体在宿主中的传播。在这项研究中,我们展示了克隆,表达式,净化,LIC_10271的表征。为了确定LIC_10271在钩端螺旋体内膜内的定位,进行TritonX-114亚细胞分级分离和免疫印迹研究。此外,r-LIC_10271与肽聚糖结合,脂多糖,和层粘连蛋白以剂量依赖的方式。信号肽的分析,M23和LysM结构域主要在钩端螺旋体的P1组内显示出保守性,其中包括最致病的物种。此外,内膜中天然LIC_10271的存在以及致病菌株中M23和LysM结构域的分布表明它们可能参与宿主和钩端螺旋体之间的相互作用。
    Leptospirosis, a global reemerging zoonosis caused by the spirochete Leptospira, has severe human and veterinary implications. Cell wall hydrolase (LIC_10271) with LytM (peptidase M23) and LysM domains are found to be associated with various pathogenic bacteria. These domains regulate effects on extracellular matrix and biofilm components, which promote cell wall remodeling and pathogen dissemination in the host. In this study, we present the cloning, expression, purification, and characterization of LIC_10271. To determine the localization of LIC_10271 within the inner membrane of Leptospira, Triton X-114 subcellular fractionation and immunoblot studies were performed. Furthermore, r-LIC_10271 binds with peptidoglycan, lipopolysaccharide, and laminin in a dose-dependent manner. Analysis of the signal peptide, M23, and LysM domains revealed conservation primarily within the P1 group of Leptospira, which encompasses the most pathogenic species. Moreover, the presence of native-LIC_10271 in the inner membrane and the distribution of M23 and LysM domains across pathogenic strains indicates their potential involvement in the interaction between the host and Leptospira.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    头孢替丁/ARX-1796(阿维巴坦前药)是一种新型的口服抗菌组合,用于早期临床开发,用于治疗包括肾盂肾炎在内的复杂尿路感染(cUTI)。ARX-1796是与头孢替丁组合用于口服给药的新型阿维巴坦前药,其在体内转化为活性阿维巴坦。临床和实验室标准研究所(CLSI)M23(2018)第2级肉汤微量稀释质量控制(QC)研究使用头孢替布汀-阿维巴坦进行,以建立MICQC范围。头孢替丁-阿维巴坦肉汤微量稀释QC范围被批准用于大肠杆菌ATCC25922(0.016/4至0.12/4μg/mL),大肠杆菌NCTC13353(0.03/4至0.12/4μg/mL),肺炎克雷伯菌ATCC700603(0.06/4至0.25/4μg/mL),肺炎克雷伯菌ATCCBAA-1705(0.03/4至0.25/4μg/mL),和肺炎克雷伯菌ATCCBAA-2814(0.12/4至0.5/4μg/mL)由CLSI抗菌药物敏感性测试小组委员会于2022年1月进行。批准的头孢替丁-阿维巴坦QC范围将支持未来的临床发展,设备制造商,和常规病人护理。
    Ceftibuten/ARX-1796 (avibactam prodrug) is a novel oral antibacterial combination in early clinical development for the treatment of complicated urinary tract infections (cUTI) including pyelonephritis. ARX-1796 is the novel avibactam prodrug being combined with ceftibuten for oral dosing that is converted to active avibactam in vivo. A Clinical and Laboratory Standards Institute (CLSI) M23 (2018) tier 2 broth microdilution quality control (QC) study was conducted with ceftibuten-avibactam to establish MIC QC ranges. Ceftibuten-avibactam broth microdilution QC ranges were approved for Escherichia coli ATCC 25922 (0.016/4 to 0.12/4 μg/mL), E. coli NCTC 13353 (0.03/4 to 0.12/4 μg/mL), Klebsiella pneumoniae ATCC 700603 (0.06/4 to 0.25/4 μg/mL), K. pneumoniae ATCC BAA-1705 (0.03/4 to 0.25/4 μg/mL), and K. pneumoniae ATCC BAA-2814 (0.12/4 to 0.5/4 μg/mL) by the CLSI Subcommittee on Antimicrobial Susceptibility Testing in January 2022. Approved ceftibuten-avibactam QC ranges will support future clinical development, device manufacturers, and routine patient care.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌细胞壁主要由肽聚糖(PG)组成,一种对维持细胞形状至关重要的多氨基糖,增长,和结构完整性。PG由A/B类青霉素结合蛋白(a/bPBP)和形状合成,伸长率,司,和孢子形成(SEDS)蛋白质,如RodA(作为棒系统细胞伸长机制的一部分),并通过“自溶”酶降解以适应生长过程。认为自溶素(特别是内肽酶[EP])是PG合成和掺入所必需的,通过产生由PG合酶修补和铺垫的缺口,但是自溶素与PG合成之间的确切关系仍未完全了解。这里,我们探讨了腹泻病原体霍乱弧菌中EP耗竭对PG合成的影响。我们发现EP耗竭导致严重的形态和分裂缺陷,但是这些细胞的质量继续增加,并且异常地掺入了新的细胞壁材料。在棒系统抑制剂的存在下进行质量增加,但是细胞在抑制aPBPs时裂解,这表明在这些条件下,aPBP是结构完整性所必需的。杆系统,虽然不是观察到的质量增加所必需的,即使在延长EP耗尽后仍保持功能。最后,淋病奈瑟菌EP的异源表达完全补充了EP不足的霍乱弧菌的生长和形态,强调PG合酶不一定通过与EP的直接相互作用起作用的可能性。总的来说,我们的研究结果表明,在霍乱弧菌的EP功能不全期间,PBP成为必要的结构完整性而杆系统是无法促进适当的细胞扩大。重要性细菌细胞壁的合成和周转必须紧密协调以避免结构完整性破坏和细胞死亡。这种协调的细节知之甚少,特别是不同细胞壁合成机器的活性是否以及如何需要细胞壁周转酶,APBPs和杆系统。我们的结果表明,在霍乱弧菌中,一类周转酶,内肽酶,是正确的细胞伸长和分裂所必需的。在EP不足期间,PBP成为维持结构完整性所必需的,虽然棒系统保持活性,但在这些条件下对细胞扩增贡献很小。我们的结果表明,aPBP比Rod系统更通用,能够识别由自溶素形成的细胞壁间隙,而不是主要的内肽酶。增加了我们对自溶素和细胞壁合酶之间协调的理解。对自溶素生物学的详细了解可能会促进针对这些基本周转过程的抗生素的开发。
    The bacterial cell wall is composed primarily of peptidoglycan (PG), a poly-aminosugar that is essential to sustain cell shape, growth, and structural integrity. PG is synthesized by class A/B penicillin-binding proteins (a/bPBPs) and shape, elongation, division, and sporulation (SEDS) proteins like RodA (as part of the Rod system cell elongation machinery) and degraded by \"autolytic\" enzymes to accommodate growth processes. It is thought that autolysins (particularly endopeptidases [EPs]) are required for PG synthesis and incorporation by creating gaps that are patched and paved by PG synthases, but the exact relationship between autolysins and PG synthesis remains incompletely understood. Here, we have probed the consequences of EP depletion for PG synthesis in the diarrheal pathogen Vibrio cholerae We found that EP depletion resulted in severe morphological and division defects, but these cells continued to increase in mass and aberrantly incorporated new cell wall material. Mass increase proceeded in the presence of Rod system inhibitors, but cells lysed upon inhibition of aPBPs, suggesting that aPBPs are required for structural integrity under these conditions. The Rod system, although not essential for the observed mass increase, remained functional even after prolonged EP depletion. Last, heterologous expression of an EP from Neisseria gonorrhoeae fully complemented growth and morphology of an EP-insufficient V. cholerae, highlighting the possibility that the PG synthases may not necessarily function via direct interaction with EPs. Overall, our findings suggest that during EP insufficiency in V. cholerae, aPBPs become essential for structural integrity while the Rod system is unable to promote proper cell expansion.IMPORTANCE Synthesis and turnover of the bacterial cell wall must be tightly coordinated to avoid structural integrity failure and cell death. Details of this coordination are poorly understood, particularly if and how cell wall turnover enzymes are required for the activity of the different cell wall synthesis machines, the aPBPs and the Rod system. Our results suggest that in Vibrio cholerae, one class of turnover enzymes, the endopeptidases, are necessary for proper cell elongation and division. aPBPs become essential for maintaining structural integrity during EP insufficiency, while the Rod system remains active but contributes little to cell expansion under these conditions. Our results suggest that aPBPs are more versatile than the Rod system in their ability to recognize cell wall gaps formed by autolysins other than the major endopeptidases, adding to our understanding of the coordination between autolysins and cell wall synthases. A detailed understanding of autolysin biology may promote the development of antibiotics that target these essential turnover processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大多数细菌都被细胞壁包围,主要由聚合的氨基糖肽聚糖(PG)组成的强网状物。PG对于细菌细胞的结构维持至关重要,因此,为了生存能力。PG也不断合成和翻转;后一个过程是由PG切割酶介导的,例如,内肽酶(EP)。EP本身对于生长至关重要,但在暴露于抑制PG合酶的抗生素后也会促进致死细胞壁降解(例如,β-内酰胺)。因此,EP是新型抗生素及其佐剂的有吸引力的靶标。然而,我们对这些酶在体内是如何被调节的知之甚少,剥夺了我们开发这种抗生素的新途径。这里,我们已经解决了LysM/M23家族肽酶ShyA的晶体结构,霍乱病原体霍乱弧菌的主要EP我们的数据表明,ShyA假设两种截然不同的构象:允许底物结合的更开放的形式和封闭的形式,我们预测是无催化活性的。预期促进开放构象的突变导致体外和体内活性增强,这些结果在来自不同病原体淋病奈瑟氏球菌和大肠杆菌的EPs中进行了概述。我们的结果表明,LysM/M23EPs是通过从M23活性位点释放抑制域1来调节的,可能通过体内构象重排。
    Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over; the latter process is mediated by PG cleavage enzymes, for example, the endopeptidases (EPs). EPs themselves are essential for growth but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases (e.g., β-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo, depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogen Vibrio cholerae Our data suggest that ShyA assumes two drastically different conformations: a more open form that allows for substrate binding and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo, and these results were recapitulated in EPs from the divergent pathogens Neisseria gonorrheae and Escherichia coli Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain 1 from the M23 active site, likely through conformational rearrangement in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    头孢地洛(以前为S-649266)是一种新型的儿茶酚取代的肠胃外铁载体头孢菌素,对革兰氏阴性分离株包括多药耐药菌株具有有效的体外抗菌活性。根据CLSIM23-A4质量控制指南的最新研究建立了针对大肠杆菌ATCC25922(0.06-0.5μg/mL)和铜绿假单胞菌ATCC27853(0.06-0.5μg/mL)的头孢地洛MICQC范围。
    Cefiderocol (formerly S-649266) is a new catechol-substituted parenteral siderophore cephalosporin with potent in vitro antibacterial activity against Gram-negative isolates including multidrug-resistant strains. A recent study following CLSI M23-A4 quality control guidelines established cefiderocol MIC QC ranges against Escherichia coli ATCC 25922 (0.06-0.5 μg/mL) and Pseudomonas aeruginosa ATCC 27853 (0.06-0.5 μg/mL).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号