LSID

  • 文章类型: Journal Article
    生物多样性知识图中的主要差距是分类名称与分类文献之间的联系。虽然名称和出版物通常都具有持久性标识符(PID),例如生命科学标识符(LSID)或数字对象标识符(DOI),名称的LSID很少链接到发布的DOI。本文介绍了在三个大型分类数据库之间建立这些连接的努力:IndexFungorum,国际植物名称索引(IPNI)和生物名称索引(ION)。超过一百万个名称已与DOI或其他分类出版物的持久性标识符匹配。这大约占可获得出版物数据的名称的36%。LSID和发布PID之间的映射可通过ChecklistBank使用。讨论了这种映射的应用,包括一个Web应用程序来查找一个分类名称的引用和一个知识图,该知识图使用研究人员ORCIDID上的数据将分类名称和出版物连接到这些名称的作者。
    A major gap in the biodiversity knowledge graph is a connection between taxonomic names and the taxonomic literature. While both names and publications often have persistent identifiers (PIDs), such as Life Science Identifiers (LSIDs) or Digital Object Identifiers (DOIs), LSIDs for names are rarely linked to DOIs for publications. This article describes efforts to make those connections across three large taxonomic databases: Index Fungorum, International Plant Names Index (IPNI) and the Index of Organism Names (ION). Over a million names have been matched to DOIs or other persistent identifiers for taxonomic publications. This represents approximately 36% of names for which publication data are available. The mappings between LSIDs and publication PIDs are made available through ChecklistBank. Applications of this mapping are discussed, including a web app to locate the citation of a taxonomic name and a knowledge graph that uses data on researcher ORCID ids to connect taxonomic names and publications to authors of those names.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:植物和动物的科学名称在生命科学中起着重要作用,因为信息被索引,集成,用学名搜索.名称的主要问题是它们的模棱两可,因为多个名称可能指向相同的分类单元,多个分类单元可能共享相同的名称。此外,科学名称随着时间的推移而改变,这让他们对各种解释持开放态度。将机器可理解的语义应用于这些名称可以有效处理信息系统中的生物内容。第一步是在引用tasa时使用唯一的持久标识符而不是名称字符串。最常用的标识符是生命科学标识符(LSID),传统上用于关系数据库中,以及最近的HTTPURI,通过链接数据应用程序在语义Web上应用。
    结果:我们介绍了两种以物种清单形式表达分类学信息的模型。首先,我们展示了如何使用LSID在关系数据库系统中显示物种清单。然后,为了获得更详细的分类信息,我们引入了元本体TaxMeOn来对与语义Web本体相同的内容进行建模,其中使用HTTPURI识别分类单元。我们还探讨了如何随着时间的推移管理科学名称的变化。
    结论:对于提供物种清单的分类学信息,使用HTTPURI更为可取。HTTPURI标识一个分类单元,并作为一个网址操作,可以从中找到有关该分类单元的其他信息,不像LSID。这使得能够使用关联数据原理在网络上集成来自不同来源的生物数据,并防止信息孤岛的形成。链接数据方法允许用户基于分类分类的冲突观点来组装信息并评估分类数据的复杂性。使用HTTPURI和语义Web技术还可以促进生物数据的语义表示,以这种方式,创造更多的“智能”生物应用和服务。
    BACKGROUND: The scientific names of plants and animals play a major role in Life Sciences as information is indexed, integrated, and searched using scientific names. The main problem with names is their ambiguous nature, because more than one name may point to the same taxon and multiple taxa may share the same name. In addition, scientific names change over time, which makes them open to various interpretations. Applying machine-understandable semantics to these names enables efficient processing of biological content in information systems. The first step is to use unique persistent identifiers instead of name strings when referring to taxa. The most commonly used identifiers are Life Science Identifiers (LSID), which are traditionally used in relational databases, and more recently HTTP URIs, which are applied on the Semantic Web by Linked Data applications.
    RESULTS: We introduce two models for expressing taxonomic information in the form of species checklists. First, we show how species checklists are presented in a relational database system using LSIDs. Then, in order to gain a more detailed representation of taxonomic information, we introduce meta-ontology TaxMeOn to model the same content as Semantic Web ontologies where taxa are identified using HTTP URIs. We also explore how changes in scientific names can be managed over time.
    CONCLUSIONS: The use of HTTP URIs is preferable for presenting the taxonomic information of species checklists. An HTTP URI identifies a taxon and operates as a web address from which additional information about the taxon can be located, unlike LSID. This enables the integration of biological data from different sources on the web using Linked Data principles and prevents the formation of information silos. The Linked Data approach allows a user to assemble information and evaluate the complexity of taxonomical data based on conflicting views of taxonomic classifications. Using HTTP URIs and Semantic Web technologies also facilitate the representation of the semantics of biological data, and in this way, the creation of more \"intelligent\" biological applications and services.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    阿卡帕尔帕·克罗伯姐妹属的澳大利亚细高跟鞋,1912年和PipinniponsWinterton,2001年(双翅目:鱼科:agaposphytinae)进行了修订。描述了十二种新的Acualpa,而Acupalpaimitans(白色,1915),梳子。n.是从Pipinnipons和Acualpaalbimanis转移的(Kröber,1914),梳子。n.从EptinorhynchusMacquart转移为AcualpapollinosaMann的高级同义词。因此,Acupalpa的物种总数增加到19:Acupalpaalbimanis(Kröber),梳子。n.,阿卡帕尔巴·曼恩,Acualpabohartisp.n.,Acualpadivisa(沃克),Acualpadolichorhynchasp。n.,Acualpaglossasp。n.,Acupalpaimitans(白色),梳子。n.,AcupalpairwiniWinterton,黑脑针叶。n.,Acualpamiabooyasp。n.,Acualpa分钟。n.,Acupalpaminutoidessp。n.,阿卡帕尔帕。n.,Acupalpanovayamarnasp.n.,AcualparostrataKröber,AcupalpasemirufaMann,Acualpawestralicasp。n.,Acupalpayalgoosp。n.和Acupalpayanchepsp。n.描述了三种新的Pipinnipons,将物种总数增加到五个:Pipinniponschauncyvallissp。n.,Pipinnipons法西斯(Kröber),Pipinniponskampmeieraesp。n.,PipinniponskroeberiWinterton,还有P.spheodasp.n.根据本文提出的新物种重新诊断Pipinnipons和Acualpa,并包括修订的物种关键。包括澳大利亚Therevidae属的二分法键。作为网络分类学的一个经验例子,分类描述是使用LucidBuilder开发的字符矩阵(结构化描述性数据(SDD)格式)组成的,以生成自然语言描述,并辅以在线样本和图像数据库。在整个文档中提供了网络资源,包括:a)指向Morphbank上所有物种的高分辨率彩色图像的链接,b)作者登记,出版物,Zoobank中的分类单元名称和其他命名行为,为每个分配生命科学标识符(LSID),c)链接到DNA序列的Genbank登录名记录,d)将LSID分配给标本记录,并链接到在线Therevidae标本数据库中的相应记录。
    Australian stiletto flies of the sister-genera Acupalpa Kröber, 1912 and Pipinnipons Winterton, 2001 (Diptera: Therevidae: Agapophytinae) are revised. Twelve new species of Acupalpa are described, while Acupalpa imitans (White, 1915), comb. n. is transferred from Pipinnipons and Acupalpa albimanis (Kröber, 1914), comb. n. is transferred from Ectinorhynchus Macquart as a senior synonym of Acupalpa pollinosa Mann. The total number of species of Acupalpa is therefore increased to 19: Acupalpa albimanis (Kröber), comb. n., Acupalpa albitarsa Mann, Acupalpa bohartisp. n., Acupalpa divisa (Walker), Acupalpa dolichorhynchasp. n., Acupalpa glossasp. n., Acupalpa imitans (White), comb. n., Acupalpa irwini Winterton, Acupalpa melanophaeossp. n.,Acupalpa miaboolyasp. n., Acupalpa minutasp. n., Acupalpa minutoidessp. n., Acupalpa notomelassp. n., Acupalpa novayamarnasp. n., Acupalpa rostrata Kröber, Acupalpa semirufa Mann, Acupalpa westralicasp. n., Acupalpa yalgoosp. n. and Acupalpa yanchepsp. n. Three new species of Pipinnipons are described, increasing the total number of species to five: Pipinnipons chauncyvallissp. n., Pipinnipons fascipennis (Kröber), Pipinnipons kampmeieraesp. n., Pipinnipons kroeberi Winterton, and P. sphecodasp. n.Pipinnipons and Acupalpa are rediagnosed in light of the new species presented herein and revised keys to species are included. A dichotomous key to genera of Australasian Therevidae is included. As an empirical example of cybertaxonomy, taxonomic descriptions were composed using a character matrix developed in Lucid Builder (in Structured Descriptive Data (SDD) format) to generate natural language descriptions supplemented by online specimen and image databases. Web resources are provided throughout the document including: a) links to high resolution colour images of all species on Morphbank, b) registration of authors, publications, taxon names and other nomenclatural acts in Zoobank, with assignment of Life Science Identifiers (LSIDs) for each, c) links to Genbank accession records for DNA sequences, and d) assignment of LSIDs to specimen records with links to respective records in an online Therevidae specimen database.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号