Inositol Phosphates

肌醇磷酸酯
  • 文章类型: Journal Article
    肌醇-1-磷酸合酶(MIPS)催化葡萄糖-6-磷酸(G6P)的NAD依赖性异构化为肌醇-1-磷酸(IMP),控制肌醇途径的限速步骤。以前的结构研究集中在详细的分子机制,忽略驱动此240kDa同源四聚体复合物功能的大规模构象变化。在这项研究中,我们确定了活跃的,嗜热真菌嗜热细胞提取物中的内源性MIPS。通过解析2.48µ(FSC=0.143)的天然结构,我们发现了一个完全填充的活跃网站。利用3D变异性分析,我们发现了MIPS的构象态,使我们能够直接可视化其催化中心的有序到无序的转变。G6P的非环状中间体在三个构象态中的两个中占据了活性位点,这表明高能中间体的静电稳定起关键作用的催化机理。对具有已知结构的所有异构酶的检查揭示了其活性位点内二级结构的相似波动。基于这些发现,我们建立了一个构象选择模型,控制底物结合和最终肌醇的可用性。特别是,MIPS的基态展示了结构配置,而与底物结合无关,在各种异构酶中观察到的模式。这些发现有助于理解MIPS基于结构的功能,作为针对调控和潜在治疗应用的未来研究的模板。
    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD+-dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus Thermochaetoides thermophila. By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    1993年发现的肌醇焦磷酸是进化上保守的信号代谢产物,其通用的作用方式日益受到重视。这些包括他们作为能源监管机构的新兴角色,磷酸供体,空间/变构调节剂,和G蛋白偶联受体信使。通过研究代谢肌醇焦磷酸盐的酶,在阐明这些含有焦磷酸盐的各种细胞和生理功能方面也取得了进展,高能分子.肌醇焦磷酸盐的两种主要形式,5-IP7和IP8,分别由肌醇六磷酸激酶(IP6Ks)和二磷酸肌醇五磷酸激酶(PPIP5Ks)合成,调节磷酸盐稳态,ATP合成,以及从胰岛素分泌到细胞能量利用的其他几种代谢过程。这里,我们回顾了目前对IP6Ks和PPIP5Ks的催化和调节机制的理解,以及它们的抵消磷酸酶。我们还强调了遗传和细胞证据,表明肌醇焦磷酸是哺乳动物代谢稳态的必需介质。
    Discovered in 1993, inositol pyrophosphates are evolutionarily conserved signaling metabolites whose versatile modes of action are being increasingly appreciated. These include their emerging roles as energy regulators, phosphodonors, steric/allosteric regulators, and G protein-coupled receptor messengers. Through studying enzymes that metabolize inositol pyrophosphates, progress has also been made in elucidating the various cellular and physiological functions of these pyrophosphate-containing, energetic molecules. The two main forms of inositol pyrophosphates, 5-IP7 and IP8, synthesized respectively by inositol-hexakisphosphate kinases (IP6Ks) and diphosphoinositol pentakisphosphate kinases (PPIP5Ks), regulate phosphate homeostasis, ATP synthesis, and several other metabolic processes ranging from insulin secretion to cellular energy utilization. Here, we review the current understanding of the catalytic and regulatory mechanisms of IP6Ks and PPIP5Ks, as well as their counteracting phosphatases. We also highlight the genetic and cellular evidence implicating inositol pyrophosphates as essential mediators of mammalian metabolic homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌醇焦磷酸1,5-IP8调节裂变酵母磷酸盐稳态调节子的表达,通过其作为抑制PHOmRNA合成的上游lncRNAs转录早熟终止的激动剂的作用,包含磷酸获得基因pho1,pho84和tgp1。1,5-IP8水平由将5-IP7转化为1,5-IP8的Asp1N末端激酶结构域和三种肌醇焦磷酸酶-Asp1C末端结构域(组氨酸酸性磷酸酶)之间的平衡决定,Siw14(一种半胱氨酸磷酸酶),和Aps1(一种Nudix酶)。在这项研究中,我们报道了Aps1的生化和遗传特征,并分析了Asp1,Siw14和Aps1突变对细胞肌醇焦磷酸水平的影响.我们发现Aps1的底物库包括无机多磷酸盐,5-IP7、1-IP7和1,5-IP8。与5-IP7相比,Aps1对1-IP7的水解表现出〜两倍的偏好,与野生型细胞相比,aps1Δ细胞的1-IP7水平高两倍。虽然Aps1和Siw14都不是增长所必需的,在YES培养基上,aps1Δsiw14Δ双突变是致命的。这种致死性是IP8中毒的表现,由此,过量的1,5-IP8驱动tgp1的去抑制,导致Tgp1介导的甘油磷酸胆碱的摄取。我们能够在缺乏甘油磷酸胆碱的ePMGT培养基上恢复aps1Δsiw14突变体,并通过删除tgp1来抑制aps1Δsiw14在YES上的严重生长缺陷。然而,通过删除tgp1无法缓解aps1Δasp1-H397A菌株的严重生长缺陷,这表明该双焦磷酸酶突变体中的1,5-IP8水平超过了一个阈值,超过该阈值的过度热情终止会影响其他基因,导致细胞毒性。
    目的:通过lncRNA介导的干扰抑制裂殖酵母PHO基因tgp1,pho1和pho84对1,5-IP8代谢的变化敏感,1,5-IP8是一种信号分子,可作为早熟lncRNA终止的激动剂。1,5-IP8由5-IP7的磷酸化形成,并由来自三个不同酶家族的肌醇焦磷酸酶分解代谢:Asp1(组氨酸酸性磷酸酶),Siw14(一种半胱氨酸磷酸酶),和Aps1(一种Nudix水解酶)。这项研究需要对Aps1进行生化表征,并分析Asp1,Siw14和Aps1突变如何影响体内生长和肌醇焦磷酸池。Aps1催化无机多磷酸盐的水解,体外5-IP7、1-IP7和1,5-IP8,与5-IP7相比,1-IP7具有〜两倍的偏好。aps1细胞的1-IP7水平比野生型细胞高两倍。aps1Δsiw14Δ双突变是致命的,因为过量的1,5-IP8会触发tgp1的抑制,导致甘油磷酸胆碱的毒性摄取。
    Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1\'s substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity.
    OBJECTIVE: Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们已经研究了肌醇六磷酸(IP6)和肌醇五磷酸(IP5)在鼠白血病病毒(MLV)复制中的功能。虽然已知IP6对于HIV-1的生命周期至关重要,但其在MLV中的意义仍未被探索。我们发现IP6对于MLV复制确实很重要。它显著增强MLV中的内源性逆转录(ERT)。此外,基于造粒的测定显示IP6可以稳定MLV核心,从而促进ERT。我们发现IP5和IP6包装在MLV颗粒中。然而,与HIV-1不同,MLV依赖于靶细胞中IP6和IP5的存在来成功感染。感染的IP6/5需求反映在IP6/5缺陷细胞系中观察到的受损逆转录中。总之,我们的发现证明了IP6/5稳定衣壳在多种逆转录病毒复制中的重要性;我们提出了我们在MLV中观察到的与HIV-1差异的可能原因.左旋六磷酸肌醇(IP6)对HIV-1的组装和复制至关重要。IP6包装在HIV-1颗粒中并稳定病毒核心,使其能够在病毒感染早期合成病毒DNA。虽然它对HIV-1的重要性已经确立,它对其他逆转录病毒的意义是未知的。在这里,我们报告了IP6在γ逆转录病毒中的作用,鼠白血病病毒(MLV)。我们发现,与HIV-1一样,MLV包装IP6,与HIV-1一样,IP6稳定了MLV核心,从而促进了逆转录。有趣的是,我们发现了IP6在MLV与HIV-1中的作用的关键差异:而HIV-1不依赖于靶细胞中的IP6水平,在IP6缺陷细胞系中MLV复制显著减少。我们建议IP6需求的这种差异反映了HIV-1和MLV复制之间的关键差异。
    We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌醇焦磷酸盐是调节真核生物类群中细胞磷酸盐稳态的信号分子。在裂殖酵母中,其中磷酸盐调节子(包含磷酸盐获取基因pho1,pho84和tgp1)在磷酸盐充足的条件下被lncRNA介导的转录干扰抑制,增加IP8水平的肌醇焦磷酸酶的突变通过引起lncRNA转录的早熟终止来抑制PHO调节子。由于甘油磷酸二酯转运蛋白Tgp1的过表达,导致IP8过多的Asp1焦磷酸酶突变在YES培养基中具有细胞毒性。IP8中毒通过裂解/聚腺苷酸化和终止因子的突变得到改善,Pol2CTD码的扰动,以及充当肌醇焦磷酸传感器的SPX结构域蛋白中的突变。这里,我们表明,IP8毒性通过SNF22+的缺失得到缓解,编码SWI/SNF染色质重塑复合物的ATPase亚基的基因,通过ATPase失活snf22-(D996A-E997A)等位基因,并通过缺失编码SWI/SNF亚基Sol1的基因。在磷酸盐充足的细胞中,snf22过度抑制pho1表达的缺失;抑制Pol2CTD突变引起的pho1抑制,终止因子Seb1,Asp1焦磷酸酶,和14-3-3蛋白Rad24(有利于早熟的prtlncRNA终止);并在磷酸盐饥饿期间延迟pho1诱导。RNA分析和缺乏突变协同作用表明Snf22不影响3'-加工/终止。使用报告分析,我们发现Snf22对tgp1和pho1启动子的活性很重要,但不是驱动PHO抑制lncRNAs合成的启动子。snf22Δ和snf22-(D996A-E997A)细胞的转录谱鉴定出另外一组66个蛋白质编码基因,这些基因在两个突变体中均下调。IMPORTANCElncRNA介导的干扰对裂变酵母PHO基因tgp1,pho1和pho84的抑制对肌醇焦磷酸动力学敏感。细胞毒性asp1-STF等位基因通过IP8作为早熟lncRNA3'-加工/终止的激动剂的作用抑制PHO基因。Pol2CTD和3'-加工/终止机制的突变减轻了IP8中毒,从而减轻了毒性IP8水平对终止的影响。在这项研究中,正向遗传筛选显示,SWI/SNF染色质重塑复合物的Snf22和Sol1亚基的突变抑制了IP8毒性.遗传和生化证据表明,SWI/SNF不影响3'-加工/终止或lncRNA启动子活性。相反,SWI/SNF对于激发PHOmRNA启动子至关重要。我们的结果暗示SWI/SNF的ATP依赖性核小体重塑活性是必要的,以确保PHO激活转录因子Pho7完全进入其在PHOmRNA启动子中的结合位点。
    Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3\'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3\'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3\'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3\'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌醇六磷酸(InsP6)是种子中磷的主要储存形式。降低种子InsP6含量是农业育种的目标,InsP6对动物营养和环境产生负面影响。然而,InsP6的积累是如何被调控的,在很大程度上仍然是未知的。这里,我们确定了受体样细胞质激酶(RLCKs)的进化枝,命名为肌醇多磷酸相关的细胞质激酶1-6(IPCK1-IPCK6),深入参与InsP6积累。在ipck四重(T-4m/C-4m)和五重(C-5m)突变体的种子中,InsP6浓度显着降低,伴随着磷酸盐(Pi)浓度的明显增加。质膜定位的IPCKs招募参与InsP6合成的IPK1,并通过GRF14-3-3蛋白的磷酸化促进其结合和活性。IPCK还分别招募InsP4/InsP5和InsP3生物合成所需的IPK2和PI-PLC,形成潜在的IPCK-GRF-PLC-IPK2-IPK1复合物。因此,我们的发现揭示了由IPCK控制的InsP6积累的调节机制,阐明真核生物InsP生物合成机制。
    Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷酸盐(Pi)提供无数的代谢途径,并参与大分子合成,储能,细胞信号,和骨骼维护。在这里,我们描述了Pi摄取和外排途径的协调以维持哺乳动物细胞Pi稳态。我们发现XPR1,假定的Pi外排转运蛋白,分别监督Pi摄取率。这个直接的,调节相互作用源于XPR1是Pi摄取转运蛋白PiT1的结合伴侣,涉及XPR1中预测的跨膜螺旋/膜外环,以及迄今为止未知的在细胞内LAMP1阳性斑点子集中的定位(称为“XLPVs”)。肌醇焦磷酸IP8感觉到Pi稳态挑战的药理学模拟,IP8使XPR1功能化,以时间上的分层方式做出反应。最初调整派流出率,随后独立调节PiT1周转以重置Pi摄取速率。这些观察结果产生了哺乳动物细胞Pi稳态的统一模型,扩大治疗干预的机会。
    Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named \"XLPVs\"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷酸盐稳态的维持是所有生物体中能量代谢和信号转导过程的基础。肌醇焦磷酸盐(PP-InsPs),由单磷酸盐和二磷酸盐部分装饰的肌醇环组成,和无机多磷酸盐(polyP),通过磷酸酐键连接的正磷酸盐残基链,是能量丰富的生物分子,在磷酸盐稳态中起关键作用。这两种富含磷酸盐的分子之间存在复杂的相互作用,它们与细胞三磷酸腺苷(ATP)和无机磷酸盐(Pi)有着相互依赖的关系。在真核生物中,参与PP-InsP合成的酶在物种之间显示出一定程度的保守性,而不同生物之间的polyP合成存在不同的酶学。事实上,polyP在后生动物中的合成机制,包括哺乳动物,还不清楚。早期的PP-InsP和polyP合成的研究是在粘液霉菌盘基网柄菌中进行的,但是在酿酒酵母中,对polyP之间的相互作用有清晰的认识,PP-InsPs,现在已经建立了Pi稳态。最近的研究揭示了PP-InsPs对哺乳动物polyP的影响。以及细胞ATP和Pi水平对这两种分子的调节。在这篇综述中,我们将讨论PP-InsPs之间的串扰,PolyP,ATP,和Pi在萌芽酵母的背景下,粘液霉菌,和哺乳动物。我们还将强调这组生物中这些富含磷酸盐的生物分子之间关系的异同。
    The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MshA是一种GT-B糖基转移酶,催化真菌硫醇生物合成的第一步。虽然许多GT-B酶经历开放到封闭的转变,MshA是独一无二的,因为它的97°旋转超出了通常的10-25°范围。对配体结合和未结合状态的MshA进行了分子动力学(MD)模拟,以研究配体结合对局部蛋白质动力学及其构象自由能景观的影响。模拟表明,酶样本的无配体“开放”和配体“封闭”形式都具有很大程度的二面角和域间距离,重叠种群相对较低。使用apo“开放”和人工生成的apo“封闭”结构的副本交换MD计算自由能表面,揭示了采样的几何形状中的重叠,允许在不存在配体的情况下计算2kcal/mol的开放到封闭过渡的势垒。完全结合的MshA的MD模拟显示二面角的采样较小。局部蛋白质波动变化表明,尽管与UDP-GlcNAc的相互作用几乎没有变化,但UDP-GlcNAc结合激活了1-1-肌醇-1-磷酸(I1P)结合位点中的环运动。圆二色性,本征荧光光谱,和诱变研究用于确认MshA中配体诱导的结构变化。结果支持提出的机制,其中UDP-GlcNAc与MshA的C端结构域刚性相互作用结合,并激活N端结构域中的柔性环以结合和定位I1P。该模型可用于未来的基于结构的药物开发中的mycohiol生物合成途径的抑制剂。
    MshA is a GT-B glycosyltransferase catalyzing the first step in the biosynthesis of mycothiol. While many GT-B enzymes undergo an open-to-closed transition, MshA is unique because its 97° rotation is beyond the usual range of 10-25°. Molecular dynamics (MD) simulations were carried out for MshA in both ligand bound and unbound states to investigate the effect of ligand binding on localized protein dynamics and its conformational free energy landscape. Simulations showed that both the unliganded \"opened\" and liganded \"closed\" forms of the enzyme sample a wide degree of dihedral angles and interdomain distances with relatively low overlapping populations. Calculation of the free energy surface using replica exchange MD for the apo \"opened\" and an artificial generated apo \"closed\" structure revealed overlaps in the geometries sampled, allowing calculation of a barrier of 2 kcal/mol for the open-to-closed transition in the absence of ligands. MD simulations of fully liganded MshA revealed a smaller sampling of the dihedral angles. The localized protein fluctuation changes suggest that UDP-GlcNAc binding activates the motions of loops in the 1-l-myo-inositol-1-phosphate (I1P)-binding site despite little change in the interactions with UDP-GlcNAc. Circular dichroism, intrinsic fluorescence spectroscopy, and mutagenesis studies were used to confirm the ligand-induced structural changes in MshA. The results support a proposed mechanism where UDP-GlcNAc binds with rigid interactions to the C-terminal domain of MshA and activates flexible loops in the N-terminal domain for binding and positioning of I1P. This model can be used for future structure-based drug development of inhibitors of the mycothiol biosynthetic pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌醇磷酸及其代谢产物在几种生化途径中起着重要作用,基因表达调控,和磷酸盐稳态。在不同的肌醇磷酸酯中,肌醇六磷酸(IP6)是肌醇六磷酸激酶(IP6Ks)的底物,其磷酸化一个或多个IP6磷酸基团。IP6的焦磷酸化导致肌醇焦磷酸盐的形成,高能信号分子通过其改变靶蛋白活性的能力来介导生理过程,通过直接结合它们的靶蛋白或通过焦磷酸化蛋白丝氨酸残基。5-二磷酸肌醇五磷酸,哺乳动物中最丰富的肌醇焦磷酸盐,已被广泛研究,并发现显着参与广泛的生理过程。三种IP6K(IP6K1,IP6K2和IP6K3)同工型调节哺乳动物IP7的合成。这里,我们总结了我们目前对IP6K1在细胞骨架重塑中的作用的理解,贩运,细胞迁移,新陈代谢,基因表达,DNA修复,和豁免权。我们还简要讨论了当前的知识差距,强调需要进一步调查。
    Inositol phosphates and their metabolites play a significant role in several biochemical pathways, gene expression regulation, and phosphate homeostasis. Among the different inositol phosphates, inositol hexakisphosphate (IP6) is a substrate of inositol hexakisphosphate kinases (IP6Ks), which phosphorylate one or more of the IP6 phosphate groups. Pyrophosphorylation of IP6 leads to the formation of inositol pyrophosphates, high-energy signaling molecules that mediate physiological processes through their ability to modify target protein activities, either by directly binding to their target protein or by pyrophosphorylating protein serine residues. 5-diphosphoinositol pentakisphosphate, the most abundant inositol pyrophosphate in mammals, has been extensively studied and found to be significantly involved in a wide range of physiological processes. Three IP6K (IP6K1, IP6K2, and IP6K3) isoforms regulate IP7 synthesis in mammals. Here, we summarize our current understanding of IP6K1\'s roles in cytoskeletal remodeling, trafficking, cellular migration, metabolism, gene expression, DNA repair, and immunity. We also briefly discuss current gaps in knowledge, highlighting the need for further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号