Implant infection

  • 文章类型: Journal Article
    植入物广泛用于骨科和牙科科学领域。钛(TI)及其合金已成为应用最广泛的植入材料,但植入物相关感染仍然是植入物手术后常见且严重的并发症.此外,钛表现出生物惰性,防止植入物和骨组织强烈结合,并可能导致植入物松动和脱落。因此,预防植入物感染和提高其骨诱导能力是重要目标。
    研究纳米银/聚乳酸乙醇酸(NSPTICU)涂层钛铜合金植入物的抗菌活性和骨诱导能力,为抑制植入物相关感染和促进骨整合提供新的途径。
    我们首先通过研究MC3T3-E1细胞的增殖和分化来检查NSPTICU植入物的体外成骨能力。此外,通过显微计算机断层扫描(micro-CT)研究了NSPTICU植入物诱导SD大鼠成骨活性的能力,苏木精-伊红(HE)染色,masson染色,免疫组织化学和范吉森(VG)染色。用革兰氏阳性金黄色葡萄球菌(Sa)和革兰氏阴性大肠杆菌(E。大肠杆菌)细菌。Sa被用作试验细菌,通过粗视标本采集研究了NSPTICU植入大鼠体内的抗菌能力,细菌菌落计数,HE染色和Giemsa染色。
    茜素红染色,碱性磷酸酶(ALP)染色,实时定量聚合酶链反应(qRT-PCR)和蛋白质印迹分析显示,NSPTICU促进MC3T3-E1细胞的成骨分化。体外抗菌结果表明,NSPTICU植入物表现出更好的抗菌性能。动物实验表明,NSPTICU可抑制炎症反应,促进骨缺损的修复。
    NSPTICU具有出色的抗菌和骨诱导能力,骨缺损的治疗具有广阔的应用前景。
    UNASSIGNED: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals.
    UNASSIGNED: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration.
    UNASSIGNED: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining.
    UNASSIGNED: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects.
    UNASSIGNED: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物膜介导的植入物感染对人类健康构成巨大威胁。迫切需要探索扭转这种局面的战略。在这里,我们设计了3-氨基-1,2,4-三唑-5-硫醇(ATT)修饰的金纳米簇(AGNs),以实现生物膜靶向和近红外(NIR)-II光响应性抗生物膜治疗。AGNC可以通过在ATT上的胺基和DNA上的羟基之间形成氢键与细菌胞外DNA相互作用。即使在短时间(5分钟)照射的低功率密度(0.5W/cm2)下,AGNCs也显示出光热特性,使它们在消除生物膜方面非常有效,分散率高达90%。体内感染的导管植入模型证明了AGNC根除生物膜内包裹的大约90%的细菌的异常高的能力。此外,AGNC在小鼠中没有可检测到的毒性或全身性作用。我们的研究表明,AGNCs具有长期预防和消除生物膜介导的感染的巨大潜力。
    The biofilm-mediated implant infections pose a huge threat to human health. It is urgent to explore strategies to reverse this situation. Herein, we design 3-amino-1,2,4-triazole-5-thiol (ATT)-modified gold nanoclusters (AGNCs) to realize biofilm-targeting and near-infrared (NIR)-II light-responsive antibiofilm therapy. The AGNCs can interact with the bacterial extracellular DNA through the formation of hydrogen bonds between the amine groups on the ATT and the hydroxyl groups on the DNA. The AGNCs show photothermal properties even at a low power density (0.5 W/cm2) for a short-time (5 min) irradiation, making them highly effective in eradicating the biofilm with a dispersion rate up to 90 %. In vivo infected catheter implantation model demonstrates an exceptional high ability of the AGNCs to eradicate approximately 90 % of the bacteria encased within the biofilms. Moreover, the AGNCs show no detectable toxicity or systemic effects in mice. Our study suggests the great potential of the AGNCs for long-term prevention and elimination of the biofilm-mediated infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于植入物上存在微生物生物膜,根除生物膜相关感染对抗生素治疗提出了挑战.该研究旨在研究新型抗生素TNP-2092在植入物感染情况下的疗效和安全性。在体内,用抗生素治疗的假体周围关节感染(PJI)大鼠显示体重增加和肿胀减少,温度,和膝盖的宽度,与对照组相比。同时,TNP-2092组滑膜和血清中的炎症标记物降低,与病理结果一致。此外,TNP-2092在消除细菌和破坏生物膜形成方面是有效的,并进一步缓解假体周围异常的骨吸收和反应性骨变化。总之,关节内注射TNP-2092治疗大鼠膝关节PJI是有效和安全的。该研究为TNP-2092在植入物相关感染的管理中的未来利用提供了基础。
    新型半合成抗生素剂TNP-2092(利福霉素与喹嗪酮的共价键)的关节内应用在膝关节假体周围感染的大鼠模型中安全有效地治疗由耐甲氧西林金黄色葡萄球菌引起的骨科植入物感染。
    Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植入物放置手术期间的感染威胁仍然是全球数百万患者的相当大的负担。为了对抗这种威胁,临床医生采用一系列抗感染策略和实践.最常见的干预措施之一是在植入物放置手术期间使用预防性抗生素治疗。然而,这些做法可能是有害的,通过促进生物膜形成细菌的复原力,使它们能够在整个治疗过程中持续存在,并在以后重新出现,导致危及生命的感染.因此,阐明在细菌表面附着的初始阶段发生的事件,并确定是否有任何生物学过程可作为改善手术结局的目标,这一点至关重要.利用基因表达分析,我们确定了金黄色葡萄球菌的细胞机制,该机制在附着于医用级钛表面后改变其细胞表面电荷。我们确定了与磷壁酸的D-丙氨酸化和磷脂酰甘油的裂解有关的两个系统的上调。我们通过利用同步加速器来源的衰减全反射傅里叶变换红外显微光谱法分析附着后金黄色葡萄球菌细胞表面的生物分子特性来支持这些分子发现。作为一个直接的后果,金黄色葡萄球菌很快变得对带正电荷的万古霉素更耐受,但不是带负电荷的头孢唑啉。本研究可以帮助临床医生合理选择预防性治疗中最有效的抗生素。此外,它强调了一个细胞过程,该过程可能被新技术和策略靶向,以改善植入物置入手术期间抗生素预防的结果.重要性声明:生物膜中细菌的抗生素耐受性是一个公认的现象。然而,金黄色葡萄球菌在表面附着的早期阶段用于增加其抗生素耐受性的生理适应性了解甚少。使用多种技术,包括基因表达分析和同步加速器来源的傅里叶变换红外显微光谱,我们对金黄色葡萄球菌在附着于医用级钛表面后的生理反应产生了见解。我们表明,这种表型转变使金黄色葡萄球菌能够更好地耐受带正电荷的万古霉素,但不是带负电荷的头孢唑啉。这些发现揭示了金黄色葡萄球菌用于预防性施用抗生素的抗生素耐受机制,并可以帮助临床医生保护患者免受感染。
    The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    假体周围关节感染(PJI)是一种具有挑战性的并发症,可在关节置换手术后发生。预防和治疗PJI及其复发的有效策略仍然难以捉摸,迫切需要一个新的解决方案。肠道微生物群中的共生细菌通过促进称为“定植抗性”的防御策略来传递有益的作用,从而防止肠道表面的致病性感染和过度生长。该蓝图可能适用于PJI。这里,目的是调查嗜酸乳杆菌。主要是,PJI相关金黄色葡萄球菌上分离的细胞外衍生的嗜酸乳杆菌蛋白(LaEPs),MRSA,和大肠杆菌浮游生长和生物膜形成的体外。LaEPs对培养的RAW264.7巨噬细胞和成骨,和成脂hBMSC分化也被分析。数据显示静电诱导的益生菌-病原体物种共聚集和病原生长抑制以及LaEP诱导的生物膜预防。LaEPs激活巨噬细胞,使它们通过组织蛋白酶K增强微生物吞噬作用,减少脂多糖诱导的DNA损伤和RANKL表达,并在慢性炎症条件下促进修复性M2巨噬细胞形态。我们的数据还显示LaEPs显着增加骨沉积,同时减少脂肪生成,因此有望成为潜在的多模式治疗策略。蛋白质组学分析突出了高丰度的赖氨酰内肽酶,尿门酸还原酶,尿酸激酶,大核糖体亚基蛋白bL12和聚酮合成酶。需要进一步的体内分析来阐明它们在PJI的预防和治疗中的作用。本文受版权保护。保留所有权利。
    Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named \"colonization resistance\" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为关键防线的宿主免疫系统是抵抗生物膜相关植入物感染的重要抵抗机制。然而,生物膜阻碍了抗菌物种的渗透,抑制免疫细胞的吞噬作用,阻碍宿主的炎症反应,最终导致宿主免疫系统对生物膜消除的弱点。在这里,通过将红细胞膜碎片包裹在Fe3O4纳米颗粒制造的微泡表面上,然后用羟基脲(EMB-Hu)加载,形成了细胞样结构。在超声(US)刺激下,EMB-Hu经历稳定的振荡方式,以“胞吐作用”机制破坏生物膜,释放剂,和增强生物膜内催化产生的抗菌物种的渗透。此外,EMB-Hu刺激的“胞吐作用”可以激活促炎巨噬细胞极化,并增强巨噬细胞吞噬作用,以清除破坏的生物膜。总的来说,这项工作表现出细胞样微泡与US刺激的“胞吐作用”机制,以克服生物膜屏障和信号巨噬细胞的炎症激活,最终取得良好的治疗效果,对耐甲氧西林金黄色葡萄球菌(MRSA)生物膜引起的植入物感染。
    Host immune systems serving as crucial defense lines are vital resisting mechanisms against biofilm-associated implant infections. Nevertheless, biofilms hinder the penetration of anti-bacterial species, inhibit phagocytosis of immune cells, and frustrate host inflammatory responses, ultimately resulting in the weakness of the host immune system for biofilm elimination. Herein, a cell-like construct is developed through encapsulation of erythrocyte membrane fragments on the surface of Fe3 O4 nanoparticle-fabricated microbubbles and then loaded with hydroxyurea (EMB-Hu). Under ultrasound (US) stimulation, EMB-Hu undergoes a stable oscillation manner to act in an \"exocytosis\" mechanism for disrupting biofilm, releasing agents, and enhancing penetration of catalytically generated anti-bacterial species within biofilms. Additionally, the US-stimulated \"exocytosis\" by EMB-Hu can activate pro-inflammatory macrophage polarization and enhance macrophage phagocytosis for clearance of disrupted biofilms. Collectively, this work has exhibited cell-like microbubbles with US-stimulated \"exocytosis\" mechanisms to overcome the biofilm barrier and signal macrophages for inflammatory activation, finally achieving favorable therapeutic effects against implant infections caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    预防细菌感染和促进骨整合对于钛(Ti)植入物的长期成功至关重要。在这项研究中,我们在Ti微型植入物上开发了一种多功能纳米涂层,以同时应对这些挑战。纳米涂层由自组装抗菌肽GL13K和银纳米颗粒组成,称为Ag-GL。我们的结果表明,Ag-GL涂层不会改变微型植入物的表面形态。与未涂覆的eTi组相比,Ag-GL涂覆的微型植入物的菌落形成单位(CFU)值降低了两个数量级。导致最小的炎症和没有明显的骨破坏细菌感染体内模型。在评估骨整合特性时,Micro-CT分析,组织形态计量学分析,和拔出测试表明,Ag-GL涂层显着增强骨整合并促进体内新骨形成。
    Preventing bacterial infection and promoting osseointegration are essential for the long-term success of titanium (Ti) implants. In this study, we developed a multifunctional nanocoating on Ti mini-implants to simultaneously address these challenges. The nanocoating consists of self-assembled antimicrobial peptides GL13K and silver nanoparticles, referred to as Ag-GL. Our results showed that the Ag-GL coating did not alter the surface morphology of the mini-implants. Ag-GL coated mini-implants demonstrated a two orders of magnitude reduction in colony-forming unit (CFU) values compared to the noncoated eTi group, resulting in minimal inflammation and no apparent bone destruction in a bacterial infection in vivo model. When evaluating osseointegration properties, micro-CT analysis, histomorphometric analysis, and pull-out tests revealed that the Ag-GL coating significantly enhanced osseointegration and promoted new bone formation in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景在这项研究中,我们的目的是确定伤口裂开率是否有差异,延迟工会,骨不连,以及使用生物可吸收局部抗生素递送系统(LADS)后的意外手术,特别是比较抗生素浸渍的硫酸钙颗粒(Osteoset-T,莱特医疗技术公司,阿灵顿,TN,美国,以下称为珠子)和壳聚糖海绵(SentrexBioSponge,BionovaMedical,日耳曼敦,TN,美国,以下称为海绵),用于治疗急性和慢性四肢伤口。方法我们在1级创伤中心进行了一项回顾性比较队列研究。纳入2010年1月至2017年12月接受珠子或海绵作为手术清创辅助治疗的所有患者。136例患者符合纳入标准.所研究的干预措施是用生物可吸收的LADS治疗的四肢伤口,珠子或海绵。主要结果测量是伤口裂开和需要意外手术。结果在研究队列中的136例患者中,78%(106/136)用珠子处理,22%(30/136)用海绵治疗。136名患者中,50人(37%)出现伤口裂开,49名患者需要意外手术。总的来说,62%(31/50)的伤口裂开患者和67.4%(33/49)的需要意外手术的患者在珠子队列中观察到(分别为p=0.0001和0.025)。然而,在多变量分析中,我们发现伤口开裂和接受意外手术的几率是,分别,与珠子组相比,海绵中发生的可能性高4.9倍(p=0.001)和2.8倍(p=0.021)。结论Sentrex海绵似乎与较高的伤口裂开率和需要意外的手术相比,骨珠。
    Background In this study, we aimed to determine if there is a difference in the rates of wound dehiscence, delayed union, nonunion, and unanticipated surgery after the use of bioabsorbable local antibiotic-delivery systems (LADS), specifically comparing antibiotic-impregnated calcium sulfate pellets (Osteoset-T, Wright Medical Technology Inc., Arlington, TN, USA, hereafter referred to as beads) and chitosan sponge (Sentrex BioSponge, Bionova Medical, Germantown, TN, USA, hereafter referred to as sponges) in the management of acute and chronic extremity wounds. Methodology We conducted a retrospective comparative cohort study in the setting of a level 1 trauma center. All patients who received either beads or sponges as an adjunct to surgical debridement from January 2010 to December 2017 were included, and 136 patients met the inclusion criteria. The intervention studied was extremity wounds that were treated with bioabsorbable LADS, either beads or sponges. The main outcome measurement was wound dehiscence and the need for unanticipated surgery. Results Of the 136 patients in the study cohort, 78% (106/136) were treated with beads, and 22% (30/136) were treated with sponges. Of the 136 patients, 50 (37%) experienced wound dehiscence, and 49 patients required unanticipated surgery. Overall, 62% (31/50) of patients with wound dehiscence and 67.4% (33/49) of patients requiring unanticipated surgery were seen in the bead cohort (p = 0.0001 and 0.025, respectively). However, in multivariable analyses, we found that the odds of having wound dehiscence and undergoing unanticipated surgery were, respectively, 4.9 (p = 0.001) and 2.8 (p = 0.021) times more likely to occur in the sponge than in the bead group. Conclusions Sentrex sponges appear to be associated with higher rates of wound dehiscence and the need for unanticipated surgery compared to Osteoset beads.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于细菌生物膜诱导的抗生素耐受性和受损的免疫反应,植入物感染很难通过传统的抗生素治疗来治愈。为了有效治疗植入物感染,治疗药物在生物膜清除过程中需要杀死细菌并调节免疫细胞的炎症反应。在这里,制备了具有pH响应性酶样活性的多功能智能中空Cu2MoS4纳米球(H-CMSNSs),用于自适应消除生物膜并调节植入物感染中巨噬细胞的炎症。在生物膜感染期间,植入物周围的组织微环境是酸性的。具有氧化酶(OXD)/过氧化物酶(POD)样活性的H-CMSNS可以催化反应性氧化物质(ROS)的产生,以直接杀死细菌并将巨噬细胞极化为促炎表型。此外,在超声(US)照射下,可以进一步增强H-CMSNSs的POD样活性和抗菌性能。生物膜消除后,植入物周围的组织微环境从酸性转变为中性。H-CMSNS显示过氧化氢酶(CAT)样活性,消除过量的ROS,将巨噬细胞极化为抗炎表型并促进受感染组织的愈合。这项工作提供了一种智能纳米酶,通过在不同治疗阶段根据植入物感染中的不同病理微环境调节ROS的产生/消除,对抗生物膜活性和免疫应答具有自适应调节。
    Implant infections are difficult to cure by traditional antibiotic therapy due to bacterial biofilm-induced antibiotic tolerance and impaired immune responses. To efficiently treat implant infections, therapeutic agents need to kill bacteria and regulate the inflammatory response of immune cells during the biofilm elimination process. Herein, multifunctional smart hollow Cu2MoS4 nanospheres (H-CMS NSs) with pH-responsive enzyme-like activities were prepared for self-adaptively eliminating biofilms and regulating the inflammation of macrophages in implant infections. During biofilm infection, the tissue microenvironment around implants is acidic. H-CMS NSs with oxidase (OXD)/peroxidase (POD)-like activities can catalyze reactive oxidative species (ROS) generation for directly killing bacteria and polarizing macrophages to a proinflammatory phenotype. Moreover, the POD-like activity and antibacterial property of H-CMS NSs can be further enhanced under ultrasound (US) irradiation. After the elimination of biofilms, the tissue microenvironment around implants shifts from acidic to neutral. H-CMS NSs show catalase (CAT)-like activity and eliminate excessive ROS, which polarizes macrophages to anti-inflammatory phenotype and promotes healing of infected tissue. This work provides a smart nanozyme with self-adaptive regulation of the antibiofilm activity and immune response by regulating ROS generation/elimination according to the different pathological microenvironments in implant infections during the different therapeutic stages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    延迟的植入物相关感染是一个重要的挑战,因为治疗涉及植入物置换的高风险。贻贝启发的抗菌涂层可以应用于以方便的方式涂覆各种植入物,但是粘合剂3,4-二羟基苯丙氨酸(DOPA)基团容易氧化。因此,设计了抗菌多肽共聚物聚(Phe7-stat-Lys10)-b-聚Tyr3,用于在酪氨酸酶诱导的酶促聚合后制备植入物涂层,以防止植入物相关感染。poly(Phe7-stat-Lys10)和polyTyr3嵌段都具有特定的功能:前者提供内在的抗菌活性,诱导抗微生物耐药性的风险较低,由于酪氨酸可在皮肤酪氨酸酶的催化下氧化为DOPA,因此后者可附着于植入物表面,通过原位注射多肽共聚物迅速产生抗菌涂层。这种具有优异抗菌效果和所需生物膜抑制活性的多肽涂层有望广泛应用于多种生物医学材料中以对抗延迟感染。
    Delayed implant-associated infection is an important challenge, as the treatment involves a high risk of implant replacement. Mussel-inspired antimicrobial coatings can be applied to coat a variety of implants in a facile way, but the adhesive 3,4-dihydroxyphenylalanine (DOPA) group is prone to oxidation. Therefore, an antibacterial polypeptide copolymer poly(Phe7-stat-Lys10)-b-polyTyr3 was designed to prepare the implant coating upon tyrosinase-induced enzymatic polymerization for preventing implant-associated infections. Both poly(Phe7-stat-Lys10) and polyTyr3 blocks have specific functions: the former provides intrinsic antibacterial activity with a low risk to induce antimicrobial resistance, and the latter is attachable to the surface of implants to rapidly generate an antibacterial coating by in situ injection of polypeptide copolymer since tyrosine could be oxidized to DOPA under catalyzation of skin tyrosinase. This polypeptide coating with excellent antibacterial effect and desirable biofilm inhibition activity is promising for broad applications in a multitude of biomedical materials to combat delayed infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号