Flower and fruit development

  • 文章类型: Journal Article
    背景:钙调蛋白(CaM)和类钙调蛋白(CML)在植物生长和发育中起调节作用,对生物和非生物胁迫的反应,和其他生物过程。作为一种受欢迎的水果和观赏作物,探索百香果花果发育的调控机制具有重要意义。
    结果:在这项研究中,从百香果基因组中鉴定出32个PeCaM/PeCML基因,并根据系统发育分析将其分为9组。结构分析,包括保守的图案,基因结构和同源建模,说明同一亚组中的PeCaM/PeCML具有相对保守的结构特征。共线性分析表明,CaM/CML基因家族的扩展可能主要是通过节段复制进行的,全基因组复制事件与基因组的快速扩增密切相关。不同花组织发育可能需要PeCaM/PeCML。重要的是,与其他PeCML基因相比,PeCML26在胚珠和果实发育过程中具有极高的表达水平,表明PeCML26具有参与百香果花和果实发育的潜在功能。与生长和发育相关的各种顺式元素的共存,激素反应性,这些PeCaM/PeCML的启动子区域中的应激反应可能有助于其不同的调节作用。此外,PeCaM/PeCML也被各种非生物胁迫诱导。这项工作提供了对CaM/CML基因家族的全面了解,并为以后研究百香果中CaM/CML基因的功能和进化提供了有价值的线索。
    结论:共32个PeCaM/PeCML基因分为9组。PeCaM/PeCML基因在不同发育阶段的花组织中显示出差异表达模式。值得注意的是,与AtCaM2高度同源的PeCML26不仅与多个BBR-BPCTFs相互作用,而且在胚珠和果实发育过程中也有较高的表达水平,表明PeCML26具有参与百香果花和果实发育的潜在功能。本研究为进一步研究和验证PeCaM/PeCML基因在百香果生长发育中的潜在功能奠定了基础。
    BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit.
    RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit.
    CONCLUSIONS: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    百香果是一种热带水果作物,具有重要的农业,经济和观赏价值。百香果的生长发育受气候条件的影响很大。在植物中,碱性螺旋-环-螺旋(bHLH)基因家族在花器官和果实发育中起着至关重要的作用,以及应激反应。然而,百香果bHLH基因的特征和功能尚不清楚。这里,确定了138个百香果bHLH成员,并将其分为20个亚科。结构分析表明,特定亚家族的PebHLH蛋白相对保守。共线性分析表明,PebHLH基因家族的扩展主要是通过节段复制进行的,重复基因的结构多样性可能有助于其功能多样性。PebHLHs,可能调节不同的花器官和果实发育,被进一步筛选出来,许多这些基因在各种应激处理下差异表达。参与发育调控的不同顺式调控元件的共存,PebHLHs启动子区的激素和应激反应可能与其不同的调节作用密切相关。总的来说,本研究将有助于PebHLHs的进一步功能研究,并为百香果育种的改进提供线索。
    Passion fruit is a tropical fruit crop with significant agricultural, economic and ornamental values. The growth and development of passion fruit are greatly affected by climatic conditions. In plants, the basic helix-loop-helix (bHLH) gene family plays essential roles in the floral organ and fruit development, as well as stress response. However, the characteristics and functions of the bHLH genes of passion fruit remain unclear. Here, 138 passion fruit bHLH members were identified and classified into 20 subfamilies. The structural analysis illustrated that PebHLH proteins of the specific subfamily are relatively conserved. Collinearity analysis indicated that the expansion of the PebHLH gene family mainly took place by segmental duplication, and the structural diversity of duplicated genes might contribute to their functional diversity. PebHLHs, which potentially regulate different floral organ and fruit development, were further screened out, and many of these genes were differentially expressed under various stress treatments. The co-presence of different cis-regulatory elements involved in developmental regulation, hormone and stress responses in the promoter regions of PebHLHs might be closely related to their diverse regulatory roles. Overall, this study will be helpful for further functional investigation of PebHLHs and provides clues for improvement of the passion fruit breeding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蓝莓(Vacciniumcorymbosum)被誉为促进健康的植物营养素的丰富来源,这有助于其迅速增长的消费者需求和生产。然而,蓝莓比大多数驯化浆果小得多,产量也低,固有的监管机制仍然难以捉摸。在这项研究中,细胞学和生理变化,以及在南部高灌木蓝莓品种\'O\'Neal\'的整个花和果实发育过程中进行了比较转录组学分析。'O\'Neal\'托杯和果实表现出独特的细胞增殖模式,生长素的积累在整个发展过程中是不寻常的,而脱落酸(ABA)水平迅速增加与花青素积累有关,总酚减少和果实成熟。转录组数据表明,许多差异表达基因(DEGs)在每个花蕾和果实发育阶段都有特异性表达。进一步的加权基因共表达网络分析(WGCNA)揭示了许多与外中皮和小柱细胞数量相关的DEG,表现出两种独特的表达模式。大多数参与生长素生物合成的DEGs,运输和信号转导上调,这种上调伴随着细胞扩增,花蕾和果实发育。然而,VcSAUR50和VcIAA9家族的个别成员可能对生长素不敏感,表明这些基因在蓝莓果实的生长发育中起着独特的作用。这些结果将支持未来的研究,以更好地了解南部高灌木蓝莓的花果发育。
    Blueberry (Vaccinium corymbosum) is reputed as a rich source of health-promoting phytonutrients, which contributes to its burgeoning consumer demand and production. However, blueberries are much smaller and have lower yields than most domesticated berries, and the inherent regulatory mechanisms remain elusive. In this study, the cytological and physiological changes, as well as comparative transcriptomic analysis throughout flower and fruit development in the southern highbush blueberry cultivar \'O\'Neal\' were performed. \'O\'Neal\' hypanthium and fruit exhibited a distinctive cell proliferation pattern, and auxin accumulation was unusual throughout development, while abscisic acid (ABA) levels rapidly increased in association with anthocyanin accumulation, total phenolic reduction and fruit maturation. Transcriptomic data showed that many differentially expressed genes (DEGs) were specifically expressed at each flower bud and fruit developmental stage. Further weighted gene co-expression network analysis (WGCNA) revealed numerous DEGs that correlated with the cell numbers of outer mesocarp and columella, showed two distinctive expression patterns. Most of the DEGs involved in auxin biosynthesis, transportation and signal transduction were upregulated, and this upregulation was accompanied by cell expansion, and flower bud and fruit development. However, individual members of VcSAUR50 and VcIAA9 families might be insensitive to auxin, suggesting that these genes play a distinctive role in the growth and development of blueberry fruits. These results will support future research to better understand the flower and fruit development of southern highbush blueberry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted.
    RESULTS: We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established.
    CONCLUSIONS: This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号