Flagellum

鞭毛
  • 文章类型: Journal Article
    微管蛋白聚合促进蛋白2(TPPP2)是哺乳动物TPPP蛋白的三个旁系同源物之一。在这篇叙述性综述中描述了其在精子发生中的可能作用。TPPP2在男性生殖系统中特异性表达,主要在睾丸和精子中,还有附睾.在睾丸中,TPPP2仅在延伸的精子细胞中表达;在附睾中,它位于精子尾巴的中间部分。TPPP2参与精子发生,在确定精子形成和形态的步骤中。TPPP2的抑制降低精子运动性(精子的曲线速度),可能是由于影响线粒体能量产生,因为TPPP2敲除小鼠具有受损的线粒体结构。有关于TPPP2在各种哺乳动物物种中的作用的数据:人类,鼠标,猪,和各种反刍动物;来自不同物种的TPPP2s之间存在显着同源性。用Tppp2-/-小鼠进行的实验表明,缺乏TPPP2会导致精子数量减少和精子严重功能障碍,包括运动能力下降;然而,体外获能和顶体反应不受影响。症状表明Tppp2-/-小鼠可被视为少弱精子症的模型。
    Tubulin polymerization-promoting protein2 (TPPP2) is one of the three paralogs of mammalian TPPP proteins. Its possible role in spermatogenesis is described in this narrative review. TPPP2 is expressed specifically in the male reproductive system, mainly in testes and sperm, and also in the epididymis. In testes, TPPP2 is exclusively expressed in elongating spermatids; in the epididymis, it is located in the middle piece of the sperm tail. TPPP2 is involved in spermiogenesis, in steps which are determinative for the formation and morphology of spermatids. The inhibition of TPPP2 decreases sperm motility (the curvilinear velocity of sperms), probably due to influencing mitochondrial energy production since TPPP2 knockout mice possess an impaired mitochondrial structure. There are data on the role of TPPP2 in various mammalian species: human, mouse, swine, and various ruminants; there is a significant homology among TPPP2s from different species. Experiments with Tppp2-/--mice show that the absence of TPPP2 results in decreased sperm count and serious dysfunction of sperm, including decreased motility; however, the in vitro capacitation and acrosome reaction are not influenced. The symptoms show that Tppp2-/--mice may be considered as a model for oligoasthenozoospermia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多细菌使用假氨基酸(Pse)或其他唾液酸样供体糖在丝氨酸或苏氨酸残基上糖基化鞭毛蛋白。通过保守的Maf型鞭毛蛋白糖基转移酶(fGT)成功重建Pse依赖性唾液酸化可能需要(a)缺失组分。这里,我们表征了革兰氏阴性细菌ShewanellaoneidensisMR-1中的两个Maf旁系同源物,并在异源宿主中重建了Pse依赖性糖基化。值得注意的是,我们发现了每个Maf的不同受体决定因素和靶标特异性。而Maf-1使用其C末端四肽重复(TPR)结构域赋予鞭毛蛋白受体和O-糖基化特异性,Maf-2需要新鉴定的保守特异性因子,糖基化因子Maf(GlfM),与鞭毛蛋白形成三元复合物。在革兰氏阴性和革兰氏阳性细菌中,GlfM直向同源物与Maf-2共同编码,并且在其四螺旋束中需要不变的天冬氨酸才能与Maf-2一起发挥作用。因此,融合的fGT进化是三方系统和双向系统中不同的鞭毛蛋白结合模式的基础,因此,受体丝氨酸残基与Pse的不同O-糖基化偏好。
    Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    假单胞菌中的群集运动通常需要功能性鞭毛和生物表面活性剂的产生/分泌。已发表的工作表明,由于gacA基因的点突变,野生型荧光假单胞菌Pf0-1成群缺乏,直到最近才被认为失活而不是减弱Gac/Rsm途径。因此,关于荧光假单胞菌Pf0-1调节蜂群运动的潜在机制知之甚少。这里,我们证明了一个ΔrsmaΔrsmEΔrsmI突变体,在表型上模拟Gac/Rsm通路过度刺激,精通蜂群运动。RsmA和RsmE似乎在该调节中起关键作用。ΔrsmAΔrsmEΔrsmI突变体的转座子诱变鉴定了影响成群运动的多种因素,包括参与鞭毛合成和生物表面活性剂生产/分泌的途径。我们发现与生物表面活性剂GacamideA生物合成或分泌相关的基因丢失会影响蜂群运动,替代西格玛因子FliA的损失也是如此,导致鞭毛功能缺陷。总的来说,这些发现提供了证据表明,如果Gac/Rsm通路被激活,荧光假单胞菌Pf0-1可以蜂群,突出了这种菌株群动的调节复杂性,并证明环状脂肽GacamideA被用作用于成群运动的生物表面活性剂。重要的变暖运动是一个协调的过程,允许细菌群落集体在表面上移动。对于荧光假单胞菌Pf0-1,该表型在亲本菌株中明显不存在,到目前为止,对这种菌株的蜂群调节知之甚少。这里,我们通过调节生物表面活性剂的产生/分泌水平,将RsmA和RsmE确定为成群运动的关键阻遏物。使用转座子诱变和随后的遗传分析,我们进一步确定了成群运动的潜在调节机制,并将GacamideA生物合成和运输机械与成群运动联系起来。
    Swarming motility in pseudomonads typically requires both a functional flagellum and the production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming deficient due to a point mutation in the gacA gene, which until recently was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impacts swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.IMPORTANCESwarming motility is a coordinated process that allows communities of bacteria to collectively move across a surface. For P. fluorescens Pf0-1, this phenotype is notably absent in the parental strain, and to date, little is known about the regulation of swarming in this strain. Here, we identify RsmA and RsmE as key repressors of swarming motility via modulating the levels of biosurfactant production/secretion. Using transposon mutagenesis and subsequent genetic analyses, we further identify potential regulatory mechanisms of swarming motility and link Gacamide A biosynthesis and transport machinery to swarming motility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    军团病的病原体,嗜肺军团菌,是一种环境细菌,在巨噬细胞中复制,寄生变形虫,并形成生物膜。嗜肺乳杆菌利用军团菌群体感应(Lqs)系统和转录因子LvbR来控制各种细菌性状,包括毒力和生物膜结构。LvbR负调节一氧化氮(NO)受体Hnox1,将群体感应与NO信号联系起来。这里,我们评估了嗜肺乳杆菌对NO的反应,并研究了这一过程的细菌受体.化学NO供体,如二亚丙基三胺(DPTA)和硝普钠(SNP),延迟并降低了鞭毛蛋白(PflaA)和6S小调节RNA(P6SRNA)启动子的表达。无标记的嗜肺乳杆菌突变株缺乏个体(Hnox1,Hnox2或NosP)或所有三种NO受体(三重敲除,TKO)像媒体中的父母菌株一样成长。然而,在TKO菌株中,DPTAN0NOate对PflaA表达的降低不太明显,这表明NO受体与NO信号有关。在ΔnosP突变体中,lvbR启动子上调,表明NosP负调节LvbR。单个和三个NO受体突变株在吞噬细胞中的生长受损,变形虫中未生长/生长细菌的表型异质性受NO受体调节。单个NO受体和TKO突变菌株显示出改变的生物膜结构和缺乏生物膜对NO的响应。总之,我们提供的证据表明嗜肺乳杆菌调节毒力,细胞内表型异质性,通过NO和三种功能非冗余NO受体形成生物膜,Hnox1、Hnox2和NosP。
    目的:高反应性双原子气体分子一氧化氮(NO)由真核生物和细菌产生,以促进相邻细胞内部和之间的短程和瞬时信号传导。尽管它作为王国间和细菌内信号分子的重要性,细菌反应和信号通路的潜在成分特征不充分。环境细菌嗜肺军团菌在原生动物和哺乳动物吞噬细胞中形成生物膜并复制。嗜肺乳杆菌有三种推定的NO受体,其中之一与军团菌群体感应(Lqs)-LvbR网络交叉调节各种细菌性状,包括毒力和生物膜结构。在这项研究中,我们用了药理学,遗传,和细胞生物学方法来评估肺炎支原体对NO的反应,并证明推定的NO受体与NO检测有关,吞噬细胞中的细菌复制,细胞内表型异质性,和生物膜的形成。
    The causative agent of Legionnaires\' disease, Legionella pneumophila, is an environmental bacterium, that replicates in macrophages, parasitizes amoeba, and forms biofilms. L. pneumophila employs the Legionella quorum sensing (Lqs) system and the transcription factor LvbR to control various bacterial traits, including virulence and biofilm architecture. LvbR negatively regulates the nitric oxide (NO) receptor Hnox1, linking quorum sensing to NO signaling. Here, we assessed the response of L. pneumophila to NO and investigated bacterial receptors underlying this process. Chemical NO donors, such as dipropylenetriamine (DPTA) NONOate and sodium nitroprusside (SNP), delayed and reduced the expression of the promoters for flagellin (PflaA) and the 6S small regulatory RNA (P6SRNA). Marker-less L. pneumophila mutant strains lacking individual (Hnox1, Hnox2, or NosP) or all three NO receptors (triple knockout, TKO) grew like the parental strain in media. However, in the TKO strain, the reduction of PflaA expression by DPTA NONOate was less pronounced, suggesting that the NO receptors are implicated in NO signaling. In the ΔnosP mutant, the lvbR promoter was upregulated, indicating that NosP negatively regulates LvbR. The single and triple NO receptor mutant strains were impaired for growth in phagocytes, and phenotypic heterogeneity of non-growing/growing bacteria in amoebae was regulated by the NO receptors. The single NO receptor and TKO mutant strains showed altered biofilm architecture and lack of response of biofilms to NO. In summary, we provide evidence that L. pneumophila regulates virulence, intracellular phenotypic heterogeneity, and biofilm formation through NO and three functionally non-redundant NO receptors, Hnox1, Hnox2, and NosP.
    OBJECTIVE: The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌鞭毛是细长的细丝,从细胞突出并负责细菌运动。它也可以是调节宿主免疫应答并参与细菌致病性的病原体相关分子模式(PAMP)。与能动的细菌相反,布鲁氏菌鞭毛没有运动目的。相反,它在调节布鲁氏菌毒力和宿主的免疫反应中发挥作用,与其他非活动细菌相似。鞭毛蛋白,Flik,在鞭毛的组装中起着关键作用,也是参与细菌毒力和致病性调节的潜在毒力因子。在这项研究中,构建猪布鲁氏菌S2flk基因缺失株及其互补株,发现flk基因缺失对布鲁氏菌主要生物学特性无显著影响,但显著增强了布鲁氏菌感染RAW264.7巨噬细胞引起的炎症反应。进一步的实验表明,FliK蛋白能够通过下调MyD88和NF-κB的表达来抑制LPS诱导的细胞炎症反应,并通过减少NF-κB途径中的p65磷酸化;它还抑制NLRP3炎症小体途径中NLRP3和caspase-1的表达。总之,我们的研究表明,布鲁氏菌FliK可能是一种毒力因子,参与布鲁氏菌致病性的调节和宿主免疫反应的调节。
    The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host\'s immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自167名患有多种鞭毛形态异常(MMAF)的不育患者,在CCDC146基因中鉴定出致病性双等位基因突变.在体细胞中,CCDC146位于有丝分裂过程中的中心体和多个微管相关细胞器,表明它是一种微管相关蛋白(MAP)。为了破译与CCDC146突变相关的不孕症的分子发病机制,产生Ccdc146敲除(KO)小鼠系。KO雄性小鼠不育,精子表现出与CCDC146突变患者相同的表型。CCDC146表达在晚期精子发生期间开始。在精子中,蛋白质是保守的,但不局限于中心粒,与体细胞不同,相反,它以微管双峰的水平存在于轴突中。与使用洗涤剂sarkosyl溶解微管双合蛋白相关的扩展显微镜表明,该蛋白质可能是微管内部蛋白质(MIP)。在亚细胞水平,CCDC146的缺失影响了所有基于微管的细胞器,如Manchette,头尾耦合装置(HTCA),和轴突。通过这项研究,对不育的新遗传原因和精子轴突形成和/或结构的新因素进行了表征。
    From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    艰难梭菌是导致医院感染的人类的重要病原体,但在社区中也越来越普遍。历史上,我们对病理学的了解一直集中在细菌产生的毒素上,这些毒素仍然是其主要毒力因子。但是,肠道微生物群的生态失调为定殖创造条件似乎是我们理解这种疾病的基础。定殖意味着细菌的几个步骤,这些细菌利用或不利用鞭毛的运动能力。在这次审查中,我们专注于当前对艰难梭菌鞭毛不同主题的理解,从它的遗传组织到它的疫苗兴趣。
    Clostridioides difficile is an important pathogen for humans with a lead in nosocomial infection, but it is also more and more common in communities. Our knowledge of the pathology has historically been focused on the toxins produced by the bacteria that remain its major virulence factors. But the dysbiosis of the intestinal microbiota creating the conditions for the colonization appears to be fundamental for our understanding of the disease. Colonization implies several steps for the bacteria that do or do not use their capacity of motility with the synthesis of flagella. In this review, we focus on the current understanding of different topics on the C. difficile flagellum, ranging from its genetic organization to the vaccinal interest in it.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    假单胞菌中的群集运动通常需要功能性鞭毛和生物表面活性剂的产生/分泌。已发表的工作表明,由于gacA基因的点突变,野生型荧光假单胞菌Pf0-1是成群缺乏的,直到最近,被认为失活而不是减弱Gac/Rsm途径。因此,关于荧光假单胞菌Pf0-1调节蜂群运动的潜在机制知之甚少。这里,我们证明了一个ΔrsmaΔrsmEΔrsmI突变体,在表型上模拟Gac/Rsm通路过度刺激,精通蜂群运动。RsmA和RsmE似乎在该调节中起关键作用。ΔrsmAΔrsmEΔrsmI突变体的转座子诱变鉴定了影响成群运动的多种因素,包括参与鞭毛合成和生物表面活性剂生产/分泌的途径。我们发现与生物表面活性剂GacamideA生物合成或分泌相关的基因丢失会影响蜂群运动,替代西格玛因子FliA的损失也是如此,导致鞭毛功能缺陷。总的来说,这些发现提供了证据表明,如果Gac/Rsm通路被激活,荧光假单胞菌Pf0-1可以蜂群,突出了这种菌株群动的调节复杂性,并证明环状脂肽GacamideA被用作用于成群运动的生物表面活性剂。
    聚集运动性是一个协调的过程,它允许细菌群落集体在表面上移动。对于荧光假单胞菌Pf0-1,该表型在亲本菌株中明显不存在,并且迄今为止对该菌株中的成群调节知之甚少。这里,我们通过调节生物表面活性剂的产生/分泌水平,将RsmA和RsmE确定为成群运动的关键阻遏物。通过转座子诱变和随后的遗传分析,我们进一步确定了成群运动的潜在调节机制,并将GacamideA生物合成和运输机械与成群运动联系起来。
    Swarming motility in pseudomonads typically requires both a functional flagellum and production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming-deficient due to a point mutation in the gacA gene, which until recently, was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impact swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌利用跨膜游泳,电化学梯度电机旋转半刚性螺旋灯丝。该引物提供了基本合成的简要概述,这些纳米机器的结构和操作。基本系统的细节和变化可以在建议的进一步阅读中找到。
    Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在细菌鞭毛生物发生中,钩-丝连接蛋白FlgK和FlgL的分泌和鞭毛的完成需要FlgN伴侣。同样,相关的FliT伴侣对于丝帽蛋白FliD的分泌是必需的,并结合鞭毛出口门蛋白FlhA和鞭毛ATPaseFliI。FlgN和FliT需要FliJ才能有效分泌底物。在幽门螺杆菌中,也不是FlgN,FliT和FliJ都有注释。我们证明HP1120的基因组位置与其他鞭毛细菌中的flgN相同,并且HP1120是空肠弯曲杆菌FlgN的同源物。建模的HP1120结构包含三个α螺旋,类似于FliT伴侣,共享一个类似的底物结合袋。使用下拉和热泳,我们显示HP1120和HP1120Δ126-144缺失突变体以纳摩尔亲和力与FlgK结合,但不是丝帽蛋白FliD,确认HP1120为FlgN。基于尺寸排阻色谱和多角度光散射,幽门螺杆菌FlgN以1:1化学计量与FlgK结合。FlgN和FliT之间的总体结构相似性表明,FlgN上的底物识别主要涉及FlgN的第三螺旋与底物的C末端螺旋之间的反平行卷曲螺旋界面。AFlgNΔ126-144N100A,Y103A,靶向该界面的S111I三重突变体显著损害FlgK的结合。最后,我们证明了FlgNΔ126-144,像Flit,以亚微摩尔亲和力与鞭毛ATPaseFliI或其N末端结构域结合。因此,FlgN和FliT可能将低丰度出口底物的递送耦合到鞭毛ATPaseFliI。本文受版权保护。保留所有权利。
    In bacterial flagellum biogenesis, secretion of the hook-filament junction proteins FlgK and FlgL and completion of the flagellum requires the FlgN chaperone. Similarly, the related FliT chaperone is necessary for the secretion of the filament cap protein FliD and binds the flagellar export gate protein FlhA and the flagellum ATPase FliI. FlgN and FliT require FliJ for effective substrate secretion. In Helicobacter pylori, neither FlgN, FliT, nor FliJ have been annotated. We demonstrate that the genome location of HP1120 is identical to that of flgN in other flagellated bacteria and that HP1120 is the homolog of Campylobacter jejuni FlgN. A modeled HP1120 structure contains three α-helices and resembles the FliT chaperone, sharing a similar substrate-binding pocket. Using pulldowns and thermophoresis, we show that both HP1120 and a HP1120Δ126-144 deletion mutant bind to FlgK with nanomolar affinity, but not to the filament cap protein FliD, confirming that HP1120 is FlgN. Based on size-exclusion chromatography and multi-angle light scattering, H. pylori FlgN binds to FlgK with 1:1 stoichiometry. Overall structural similarities between FlgN and FliT suggest that substrate recognition on FlgN primarily involves an antiparallel coiled-coil interface between the third helix of FlgN and the C-terminal helix of the substrate. A FlgNΔ126-144 N100A, Y103A, S111I triple mutant targeting this interface significantly impairs the binding of FlgK. Finally, we demonstrate that FlgNΔ126-144 , like FliT, binds with sub-micromolar affinity to the flagellum ATPase FliI or its N-terminal domain. Hence FlgN and FliT likely couple delivery of low-abundance export substrates to the flagellum ATPase FliI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号