ESCRT-III

ESCRT - III
  • 文章类型: Journal Article
    转运(ESCRT)机制所需的内体分选复合物是一种进化保守的胞浆蛋白复合物,在真核生物的膜重塑和断裂事件中起着至关重要的作用。最初发现它在多囊泡体(MVB)形成中的功能,ESCRT复合体已经牵涉到广泛的膜相关过程,包括内吞作用,胞吐作用,胞质分裂,和自噬。最近的进展已经阐明了ESCRT组装途径,并强调了各种ESCRT复合物及其相关伴侣的不同功能。在ESCRT复合体中,ESCRT-III在膜重塑中脱颖而出,其子单元组装成能够弯曲和切断膜的高阶多聚体。这篇综述的重点是ESCRT-III复合体,探索其在MVB生物发生之外的细胞过程中的多种功能。我们深入研究了ESCRT-III介导的膜重塑的分子机制,并强调了其在病毒出芽等过程中的新兴作用。自噬小体闭合,和细胞动力学脱落。我们还讨论了ESCRT-III失调在神经退行性疾病中的意义。ESCRT-III在不同细胞过程中的多功能膜重塑能力强调了其在维持适当细胞功能中的重要性。此外,我们强调了ESCRT-III作为神经退行性疾病治疗靶点的潜力,提供对疾病的治疗和相关研究领域的技术应用的见解。
    The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    3-一氯丙烷-1,2-二醇(3-MCPD)是主要来自食品热加工的氯丙醇污染物,可能会影响肾脏。焦亡是由炎性体和胃泌素介导的程序性细胞死亡,过度的细胞焦亡和炎症会导致组织损伤。在本研究中,我们发现3-MCPD在体外和体内增加乳酸脱氢酶(LDH)水平,增加NOD样受体家族pyrin结构域含3(NLRP3)的蛋白表达,GSDMD的N-末端结构域(GSDMD-N),并裂解caspase-1,促进白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)的释放,诱导肾细胞焦亡和炎症。机理研究表明,N-乙酰半胱氨酸(NAC)的加入,ROS清除剂,抑制NLRP3激活并减弱焦亡。此外,我们发现3-MCPD通过抑制ESCRT-III介导的线粒体自噬诱导ROS积累。这些结果通过荷电多囊体蛋白4B(CHMP4B)的过表达进一步验证。ESCRT-III的一个关键子单元,以及添加线粒体自噬活化剂羰基氰化物间氯苯腙(CCCP)和雷帕霉素(Rapa)。因此,我们的结果表明,3-MCPD可以诱导线粒体损伤并产生ROS。3-MCPD抑制线粒体自噬,导致受损的线粒体和ROS的积累,从而激活NLRP3和焦亡。同时,3-MCPD介导的ESCRT-III抑制阻碍了GSDMD诱导的细胞膜破裂的修复,这进一步导致了焦亡的发生。我们的发现为研究3-MCPD诱导的肾损伤的潜在机制提供了新的视角。
    3-Monochloropropane-1,2-diol (3-MCPD) is a chloropropyl alcohol contaminant mainly from the thermal processing of food and could affect kidneys. Pyroptosis is programmed cell death mediated by inflammasomes and gasdermins, and excessive cellular pyroptosis and inflammation can lead to tissue injury. In the present study, we found that 3-MCPD increased lactate dehydrogenase (LDH) levels in vitro and in vivo, increased the protein expression of NOD-like receptor family pyrin domain containing 3 (NLRP3), N-terminal domain of GSDMD (GSDMD-N), and cleaved caspase-1 and promoted the release of interleukin-1β (IL-1β) and interleukin-18 (IL-18), which induced renal cell pyroptosis and inflammation. Mechanistic studies indicated that the addition of N-acetylcysteine (NAC), a ROS scavenger, inhibited NLRP3 activation and attenuated pyroptosis. Furthermore, we revealed that 3-MCPD induced ROS accumulation by inhibiting ESCRT-III-mediated mitophagy. These results were further validated by the overexpression of charged multivesicular body protein 4B (CHMP4B), a key subunit of ESCRT-III, and the addition of the mitophagy activator carbonyl cyanide m-chlorophenylhydrazone (CCCP) and rapamycin (Rapa). Thus, our results showed that 3-MCPD could induce mitochondrial damage and produce ROS. 3-MCPD suppressed mitophagy, leading to the accumulation of damaged mitochondria and ROS, thereby activating NLRP3 and pyroptosis. Meanwhile, 3-MCPD-mediated suppression of ESCRT-III hindered the repair of GSDMD-induced cell membrane rupture, which further caused the occurrence of pyroptosis. Our findings provide new perspectives for studying the mechanisms underlying 3-MCPD-induced renal injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在真核细胞中,核膜(NE)是细胞核和细胞质之间的膜分区,以分隔核内容物。它在促进核功能包括转录中起着重要作用,DNA复制和修复。在哺乳动物细胞中,NE在细胞分裂过程中分解然后重新形成,在中间阶段,它在机械力引起的NE破裂后不久就恢复了。这样,分配效应通过整个细胞周期的动态过程来调节。重建NE结构的失败会触发细胞核和细胞质内容物的混合,导致核功能的灾难性后果。尽管细胞分裂过程中NE重整和间期NE恢复的分子机制的精确细节仍在研究中,在这里,我们主要关注哺乳动物细胞来描述已经确定的关键方面,并讨论它们之间的串扰。
    In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脱落是胞质分裂的最后一步,它允许通过细胞膜的断裂物理分离姐妹细胞。这种变形是由可以结合膜并形成动态螺旋的ESCRT-III蛋白驱动的。脱落的关键步骤是在正确的时间和地点募集ESCRT-III蛋白。Alix是将ESCRT-III蛋白从酵母募集到哺乳动物的最佳特征蛋白之一。然而,最近的体内研究表明,在不同的细胞环境中,在脱落部位也需要与Alix独立或冗余起作用的途径。这里,我们表明,Lgd与Alix冗余地作用,以在果蝇卵子发生期间将ESCRT-III正确定位到胚系干细胞(GSC)的脱落部位。我们进一步证明Lgd在多个位点被CycB/Cdk1激酶磷酸化。我们发现这些磷酸化事件增强了灌木的活性,果蝇ESCRT-III,在GSC脱落期间。我们的研究表明,Lgd和Alix之间的冗余,并与细胞周期激酶Cdk1协调,赋予果蝇生殖系干细胞强大而及时的脱落。
    Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转运所需的内体分选复合物(ESCRT)是介导膜重塑和断裂的保守蛋白质机器。在病毒感染的背景下,ESCRT-III复合物的不同成分,作为催化膜裂变的核心机械,涉及多种病毒进入,复制,和/或萌芽。然而,ESCRT-III与病毒生命周期中的病毒因子之间的相互作用,特别是对于大型包膜DNA病毒,基本上是未知的。最近,ESCRT-III组件Vps2B,Vps20,Vps24,Snf7,Vps46和Vps60被确定为进入和/或离开杆状病毒加利福尼亚多核多角体病毒(AcMNPV)。这里,我们确定了节食夜蛾的最后三个ESCRT-III成分Chm7,Ist1和Vps2A。这些蛋白质的显性阴性形式的过表达或其转录物的RNAi下调显着降低了AcMNPV的感染性出芽病毒(BV)的产生。定量PCR以及共聚焦和透射电子显微镜分析显示,在核衣壳的进出过程中,BV的内化和运输需要这些蛋白质。在受感染的Sf9细胞中,9种ESCRT-III成分分布在核膜和质膜上,除Chm7外,其他成分也位于核内环区。Y2H和BiFC分析显示,64种BV相关蛋白中有42种与单个或多个ESCRT-III成分相互作用,其中包括35种BV结构蛋白和7种非BV结构蛋白。通过进一步绘制64个BV相关蛋白的相互作用组,我们建立了ESCRT-III和参与BV进出的病毒蛋白复合物的相互作用网络。重要性从古细菌到真核生物,转运所需的内体分选复合物(ESCRT)-III复合物被许多包膜和无包膜DNA或RNA病毒劫持,以实现有效复制。然而,ESCRT-III招募机制,特别是对于大型包膜DNA病毒,仍然难以捉摸。最近,我们发现了ESCRT-III组件Vps2B,Vps20,Vps24,Snf7,Vps46和Vps60对于进入和/或离开加利福尼亚自拟多核多角体病毒的出芽病毒(BV)是必需的。这里,我们证明了其他三种ESCRT-III成分Chm7,Ist1和Vps2A在BV感染中的作用相似。通过确定感染细胞中ESCRT-III组分的亚细胞定位,并绘制9种ESCRT-III组分与64种BV相关蛋白的相互作用图,我们建立了ESCRT-III和参与BV进出的病毒蛋白复合物的相互作用网络。这些研究为理解ESCRT介导的杆状病毒复制的膜重塑机制提供了基础。
    The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses\' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    HIV-1出芽以及许多其他细胞过程需要运输所需的内体分选复合物(ESCRT)机制。由于空间分辨率和瞬时ESCRT-III募集,对HIV-1出芽位点的天然ESCRT-III复合物的理解受到限制。这里,我们开发了一种药物诱导的瞬时HIV-1出芽抑制工具,以提高ESCRT-III在出芽位点的寿命.我们生成了可自动切割的CHMP2A,CHMP3和CHMP4B与丙型肝炎病毒NS3蛋白酶的融合蛋白。我们在不存在和存在蛋白酶抑制剂Glecaprevir的情况下表征了CHMP-NS3融合蛋白的表达,稳定性,本地化,和HIV-1GagVLP萌芽。免疫印迹实验揭示了CHMP-NS3融合蛋白的快速稳定积累。值得注意的是,在药物管理后,CHMP2A-NS3和CHMP4B-NS3融合蛋白显著降低VLP释放,而CHMP3-NS3没有作用,但与CHMP2A-NS3协同作用。定位研究表明CHMP-NS3融合蛋白在质膜上的重新定位,内体,和GagVLP萌芽位点。通过结合使用透射电子显微镜和视频显微镜,我们揭示了CHMP2A-NS3和CHMP4B-NS3的药物依赖性积累,导致HIV-1Gag-VLP释放延迟.我们的发现为在HIV-1出芽过程中抑制ESCRT-III的功能后果提供了新的见解,并建立了新的工具来破译ESCRT-III在HIV-1出芽位点和其他ESCRT催化的细胞过程中的作用。
    HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转运所需的内体分选复合物(ESCRT)机制介导完成细胞动力学脱落并分离分裂的细胞的膜裂变步骤。由ESCRT-III亚基组成的细丝将细胞间桥中间体的膜收缩到脱落点。这些细丝还结合并募集辅助因子,这些辅助因子的活性有助于通过NoCut/Absission检查点响应有丝分裂错误执行脱落和/或延迟脱落时间。我们先前表明ESCRT-III亚基IST1结合半胱氨酸蛋白酶Calpain-7(CAPN7),并且CAPN7是有效脱落和NoCut检查点维持所必需的(Wenzel等人。,2022年)。这里,我们报告了生化和晶体学研究,表明CAPN7的串联微管相互作用和运输(MIT)域同时与两个不同的IST1MIT相互作用基序结合。CAPN7MIT结构域中的结构指导点突变破坏了体外和细胞中的IST1结合,和消耗/救援实验表明,CAPN7-IST1相互作用是(1)CAPN7招募到中体所必需的,(2)有效的脱落,和(3)NoCut检查站逮捕。CAPN7蛋白水解活性也是脱落和检查点维持所必需的。因此,IST1将CAPN7招募到中体,其中需要其蛋白水解活性来调节和完全脱落。
    The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease Calpain-7 (CAPN7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem microtubule-interacting and trafficking (MIT) domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for (1) CAPN7 recruitment to midbodies, (2) efficient abscission, and (3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长期以来被视为胞质分裂的残余,哺乳动物中体(MB)在脱落后释放到称为MB残留物(MBR)的大细胞外囊泡内。最近的证据表明MBR可以调节细胞增殖和细胞命运决定。这里,我们证明了MB基质是核糖核蛋白组装的位点,并且富含编码参与细胞命运的蛋白质的mRNA,肿瘤发生,和多能性,我们称之为MB颗粒。MB和脱落后MBR都是时空调控的翻译位点,当新生子细胞重新进入G1时开始,并在细胞外释放后继续。MKLP1和ARC是RNA在MB暗区的定位和翻译所必需的,而ESCRT-III对于维持MB的翻译水平是必需的。我们的工作揭示了在脱落期间和大的细胞外囊泡内发生的独特翻译事件。
    Long ignored as a vestigial remnant of cytokinesis, the mammalian midbody (MB) is released post-abscission inside large extracellular vesicles called MB remnants (MBRs). Recent evidence suggests that MBRs can modulate cell proliferation and cell fate decisions. Here, we demonstrate that the MB matrix is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, which we are calling the MB granule. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III is necessary to maintain translation levels in the MB. Our work reveals a unique translation event that occurs during abscission and within a large extracellular vesicle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞脱落是导致两个子细胞物理分离的胞质分裂的最后一步。支架蛋白ALIX和ESCRT-I蛋白TSG101有助于将ESCRT-III募集到中体,协调细胞间桥的最终膜断裂。这里,我们讨论了ALIX和ESCRT-III亚基CHMP4B向中体的转运机制。结构照明显微镜显示ALIX在中体逐渐积累,导致形成从中体延伸到脱落部位的螺旋状结构,与CHMP4B强烈共定位。活细胞显微镜发现ALIX与CHMP4B一起出现在囊泡结构中,其运动是微管依赖性的。ALIX的耗尽导致中体的结构改变和CHMP4B的延迟募集,导致延迟脱落。同样,驱动蛋白-1运动KIF5B的消耗降低了ALIX阳性囊泡的运动性,并延迟了ALIX的中体募集,TSG101和CHMP4B,伴随着受阻碍的脱落。我们建议ALIX,TSG101和CHMP4B与通过驱动蛋白-1在微管上运输到细胞动力学桥和中体的内体囊泡相关,从而有助于它们在脱落中的功能。
    Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管控制分离细胞脱落的分子机制已被大量阐明,那些被表皮细胞(EC)包围的上皮祖细胞脱落的细胞,通过细胞连接连接,在很大程度上仍未被探索。这里,我们研究了果蝇感觉器官前体(SOP)的胞质分裂过程中由隔断连接(SJs)确保的细胞旁扩散屏障的重塑。我们发现SOP胞质分裂涉及协调,在分裂的细胞及其邻居中,通过指向SOP中体的膜突起与前者保持连接。SJ组装和中体基底移位在SOP中比在EC中发生得更快,导致在中体释放之前更快地解开相邻的细胞膜突起。正如在分离细胞中报道的那样,转运-III组分灌木/CHMP4B所需的内体分选复合物在中体募集,细胞自主调节脱落。此外,灌木被招募到膜突起,是SJ完整性所必需的,SJ完整性的改变导致过早脱落。我们的研究揭示了灌木在协调SJ和SOP脱落重塑中的细胞内在和外在功能。
    Although the molecular mechanisms governing abscission of isolated cells have largely been elucidated, those underlying the abscission of epithelial progenitors surrounded by epidermal cells (ECs), connected via cellular junctions, remain largely unexplored. Here, we investigated the remodeling of the paracellular diffusion barrier ensured by septate junctions (SJs) during cytokinesis of Drosophila sensory organ precursors (SOPs). We found that SOP cytokinesis involves the coordinated, polarized assembly and remodeling of SJs in the dividing cell and its neighbors, which remain connected to the former via membrane protrusions pointing towards the SOP midbody. SJ assembly and midbody basal displacement occur faster in SOPs than in ECs, leading to quicker disentanglement of neighboring cell membrane protrusions prior to midbody release. As reported in isolated cells, the endosomal sorting complex required for the transport-III component Shrub/CHMP4B is recruited at the midbody and cell-autonomously regulates abscission. In addition, Shrub is recruited to membrane protrusions and is required for SJ integrity, and alteration of SJ integrity leads to premature abscission. Our study uncovers cell-intrinsic and -extrinsic functions of Shrub in coordinating remodeling of the SJs and SOP abscission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号