ERK1/2, extracellular signal-regulated kinase 1/2

ERK1 / 2 , 细胞外信号调节激酶 1 / 2
  • 文章类型: Journal Article
    Erb-b2受体酪氨酸激酶2(ErbB2)是一种癌基因,经常在癌症亚组中过度表达。已经开发了抗ErbB2疗法来治疗这些类型的癌症。然而,关于抗ErbB2药物如何影响ErbB2的运输和降解知之甚少。我们证明了可逆和不可逆的酪氨酸激酶抑制剂(TKIs)差异调节ErbB2的亚细胞运输和下调。只有不可逆的TKIs才能诱导ErbB2表达的丧失,不依赖于蛋白酶体或溶酶体。不可逆的TKIs促进ErbB2从质膜的内吞作用并增强ErbB2在内体的积累。ErbB2的内吞作用是由动力蛋白依赖性但不依赖于网格蛋白的机制介导的。ErbB2内吞作用的阻断可损害TKI诱导的ErbB2下调。
    Erb-b2 receptor tyrosine kinase 2 (ErbB2) is an oncogene that frequently overexpressed in a subset of cancers. Anti-ErbB2 therapies have been developed to treat these types of cancers. However, less is known about how anti-ErbB2 drugs affect the trafficking and degradation of ErbB2. We demonstrate that the reversible and irreversible tyrosine kinase inhibitors (TKIs) differentially modulate the subcellular trafficking and downregulation of ErbB2. Only the irreversible TKIs can induce the loss of ErbB2 expression, which is not dependent on proteasome or lysosome. The irreversible TKIs promote ErbB2 endocytosis from plasma membrane and enhance the ErbB2 accumulation at endosomes. The endocytosis of ErbB2 is mediated by a dynamin-dependent but clathrin-independent mechanism. Blocking of ErbB2 endocytosis can impair the TKI-induced ErbB2 downregulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌肉萎缩(MA)是一种多种起源的疾病,即,遗传或最常见的,机械损伤造成的。到目前为止,没有通用的治疗模式,因为这种疾病通常是进行性的,有许多明显的症状。此外,目前尚无针对肌肉萎缩的安全低危疗法.出于这个原因,我们的研究重点是寻找一种使用天然化合物治疗MA的替代方法。这项研究提出了在细胞水平上实施天然物质,如雷公藤红素和钩藤碱,使用模拟和控制的萎缩过程。方法:以雷公藤多酚和钩藤碱作为天然化合物,对抗C2C12细胞的模拟萎缩。刺激骨骼肌C2C12细胞进行分化过程。通过暴露于阿霉素的低浓度获得了萎缩性条件,并通过FoxO3和MAFbx进行了验证。通过MTT测定和MT-CO1,VDAC1和阻断素表达确定药物对细胞增殖的保护和再生作用。结果:获得的结果表明,两种天然物质均可减少萎缩性症状。在生存力研究中,钩藤碱和雷公藤红素减毒的萎缩性细胞,通过直径测量进行形态学分析,调制阻抑素VDAC,和MT-CO1表达。结论:所获得的结果表明,雷公藤红素和钩藤碱可以有效地用作萎缩相关疾病的支持治疗。因此,天然药物对肌肉再生似乎很有希望。
    Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    炎症性关节炎是老年人致残的主要原因。这种情况会导致关节疼痛,功能丧失,生活质量下降,主要是由于骨关节炎(OA)和类风湿性关节炎(RA)。目前,炎性关节炎的可用治疗选择包括口服抗炎药,topic,或关节内路线,手术,和身体康复。治疗炎症性关节炎的新替代方法,到目前为止,由于灾难性的经济负担和微不足道的治疗益处,仍然是巨大的挑战。鉴于非靶向的全身细胞毒性和药物治疗的生物利用度有限,一个主要关注的问题是使用纳米材料建立刺激响应性药物递送系统,在生物医学应用中具有开关潜力.这篇综述总结了取决于各种内部刺激(包括还原-氧化(氧化还原),pH值,和酶)和外部刺激(包括温度,超声(美国),磁性,照片,电压,和机械摩擦)。该综述还探讨了基于病理变化使用刺激响应性纳米材料来管理炎症性关节炎的进展和挑战。包括软骨退化,滑膜炎,软骨下骨破坏.暴露于由这种组织病理学改变引起的适当刺激可以触发治疗药物的释放。在炎性关节炎的关节靶向治疗中势在必行。
    Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化应激是导致糖尿病并发症发展的关键因素。谷胱甘肽S-转移酶(GSTs)通过将谷胱甘肽与亲电底物缀合来保护氧化应激产物,产生通常反应性较低且更易溶的化合物。糖尿病期间GSTs的表达和活性已被广泛研究,但对Pi类GST(GSTP)的调控机制知之甚少。本研究的目的是评估在链脲佐菌素(STZ)诱导的鼠糖尿病模型中GSTP的调节方式。在用STZ糖尿病的成年雄性小鼠中测定GST活性和GSTP表达。特异性蛋白1(Sp1)的表达和O-糖基化,以及AP-1成员Jun和Fos在GSTP表达调控中的作用,也进行了评估。结果显示,糖尿病肝脏GST总活性、GSTPmRNA和蛋白水平均降低,胰岛素给药后恢复到正常值。胰岛素模拟药物钒酸盐也能够恢复GST活性,但未能恢复GSTPmRNA/蛋白水平。在糖尿病动物中,O-糖基化Sp1水平升高,然而,在胰岛素治疗的动物中,糖基化值与对照组相似。服用vanadate后,Sp1表达水平和糖基化均低于对照组。我们的结果表明,高血糖可能导致观察到的Sp1O-糖基化增加,这将,反过来,导致糖尿病小鼠肝脏中Sp1依赖性GSTP的表达降低。
    Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    多柔比星在癌症中的临床使用受到可导致心力衰竭的心脏毒性作用的限制。而早期的工作集中在阿霉素对心肌细胞的直接影响,最近的研究转向了内皮,因为多柔比星损伤的内皮细胞可以通过减少关键内皮因子的释放和活性并诱导内皮细胞死亡来引发心肌病的发展和进展。因此,内皮代表了改善检测的新目标,管理,和预防阿霉素诱发的心肌病。
    The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    半胱氨酸蛋白酶继续为治疗人类疾病提供有效的靶标。在神经退行性疾病中,多种半胱氨酸蛋白酶为酶抑制剂提供靶标,特别是胱天蛋白酶,钙蛋白酶,和组织蛋白酶。反应,相对于其他蛋白酶家族,活性位点半胱氨酸为许多抑制剂设计提供了特异性,如天冬氨酸和丝氨酸;然而,a)抑制剂策略通常使用共价酶修饰,和b)在半胱氨酸蛋白酶及其同工酶家族内获得选择性是有问题的。这篇综述提供了半胱氨酸蛋白酶抑制剂设计策略的一般更新,并重点关注组织蛋白酶B和钙蛋白酶1作为神经退行性疾病的药物靶标;后者的重点为当代不可逆的假设提供了一个有趣的查询,共价蛋白质修饰和低选择性是治疗安全性和有效性的障碍。
    Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝脏具有独特的再生潜能,可以恢复缺血和切除损伤后丢失的质量和功能。肝脏再生的潜在分子机制已被广泛研究在过去使用部分肝切除术(PH)模型在啮齿动物,其中2/3PH是通过去除两个波瓣来进行的。肝脏再生的整个过程是复杂的,涉及连接交互网络的精心策划的事件,仍然完全难以捉摸。胆汁酸(BAs)是法尼醇X受体(FXR)的配体,配体激活的转录因子的核受体。FXR已被证明高度参与肝再生。BAs和FXR不仅相互作用,而且在肝脏再生过程中独立调节各种下游靶标。此外,最近的研究结果表明,组织特异性FXR也有助于肝脏再生显着。这些新发现表明,FXR比调节BA具有更广泛的作用,胆固醇,脂质和葡萄糖代谢。因此,这些研究强调了FXR作为FXR配体在临床上可能用于调节肝再生的重要药物靶标。本文综述了BAs和FXR在肝脏再生中的作用以及目前促进肝脏再生的潜在分子机制。
    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    生腱蛋白家族的细胞外基质蛋白在其结构域结构上彼此相似,并且在调节细胞粘附和细胞对生长因子的反应方面也具有共同的功能。尽管有这些共同的特点,4种脊椎动物生腱蛋白表现出截然不同的表达模式。Tenascin-R对中枢神经系统具有特异性。Tenascin-C是一种由许多刺激(生长因子,细胞因子,机械应力),但在空间和时间上的发生受到限制。相比之下,生腱蛋白X是结缔组织的组成成分,其水平几乎不受外部因素的影响。最后,生腱蛋白-W的表达与生腱蛋白-C的表达相似,但更为有限。根据其高度调控的表达,生腱蛋白-C和-W基因的启动子含有TATA盒,而其他2个肌腱没有。本文总结了目前已知的4个生腱蛋白基因在发育和疾病中的复杂转录调控。
    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an \"oncofetal\" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号