EHMT1

EHMT1
  • 文章类型: Case Reports
    目的:报告第一例被诊断为Kleefstra综合征的巴西儿童,为该综合征提供可能的表型扩展,并提高医生对这种罕见疾病的认识。
    结果:评估了7例确诊KS的患者,其中男性5人,女性2人。在4例患者中观察到异常的产前发现。大多数病人是足月出生的,正常出生测量。所有患者均有神经发育迟缓,6例出现智力障碍。57.1%的患者存在听力损失,28.7%的患者患有先天性心脏病。在男性中,75%存在隐睾。尽管面部畸形,7例患者中只有2例有KS的试验前临床怀疑.一位特定的患者出现了半规管的双侧发育不全,Kleefstra综合征中非常罕见的耳朵表现,代表该综合征可能的表型扩展。
    结论:本报告旨在提高医生在神经发育迟缓或先天性畸形背景下评估患者的意识。尤其是先天性心脏缺陷.我们还强调了该综合征可能的表型扩展,一个半圆形异常的病例,到目前为止还没有报道这种综合症。
    OBJECTIVE: to report the first case series of Brazilian children diagnosed with Kleefstra syndrome, present a possible phenotype expansion to the syndrome and to raise physicians\' awareness for this rare disease.
    RESULTS: seven patients with confirmed KS were evaluated, including 5 males and 2 females. Abnormal prenatal findings were observed in 4 patients. Most patients were born at term, with normal birth measurements. All patients had neurodevelopmental delay and 6 evolved with intellectual disability. Hearing loss was present in 57.1% of patients and 28.7% had congenital heart disease. In males, cryptorchidism was present in 75%. Despite the facial dysmorphisms, only 2 out of 7 patients had a pre-test clinical suspicion of KS. One specific patient presented bilateral agenesis of the semicircular canals, a very rare ear manifestation in Kleefstra syndrome, representing a possible phenotype expansion of the syndrome.
    CONCLUSIONS: this report aims to promote awareness among physicians evaluating patients in a context of neurodevelopmental delay or congenital malformations, especially congenital heart defects. We also highlight a possible phenotype expansion of the syndrome, with a case of semicircular anomaly, not reported in this syndrome so far.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Trithorax相关H3K4甲基转移酶,KMT2C和KMT2D,是关键的表观遗传修饰剂。KMT2C的单倍功能不全最近才被认为是神经发育障碍(NDD)的原因,因此KMT2C相关NDD(现称为Kleefstra综合征2)的临床和分子谱在很大程度上是未知的.我们确定了98例具有罕见KMT2C变体的个体,包括75个蛋白质截短变体(PTV)。值得注意的是,15%的KMT2CPTV是遗传的。尽管最高表达的KMT2C转录物仅由最后四个外显子组成,在这个大基因的几乎所有外显子中都发现了致病性PTV。由于分段重复和克隆性造血引起的伪影,KMT2C变体解释可能具有挑战性。使用来自27个受影响个体的样本,分为发现和验证队列,我们产生了中度强度障碍特异性KMT2CDNA甲基化(DNAm)特征,并证明了其在分类非截短变体中的实用性.基于81名具有致病性/可能的致病性变异的个体,我们证明与KMT2C相关的NDD具有发育迟缓的特征,智力残疾,行为和精神问题,低张力,癫痫发作,身材矮小,和其他合并症。PhenoScore的面部模块,适用于34名受影响个人的照片,揭示了KMT2C相关的面部完形与一般NDD人群有显著差异。最后,使用PhenoScore和DNAM签名,我们证明KMT2C相关NDD在临床和表观遗传上与Kleefstra和Kabuki综合征不同.总的来说,我们定义了临床特征,分子光谱,与KMT2C相关的NDD的DNAm签名,并证明它们与Kleefstra和Kabuki综合征不同,强调需要重命名这种情况。
    Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因诊断向基因型优先的转变彻底改变了我们对神经发育障碍的理解,扩展它们的分子和表型光谱。Kleefstra综合征(KLEFS1)由EHMT1单倍体功能不全引起,并表现出广泛的临床表现。EHMT1编码原色组蛋白甲基转移酶-1-表观遗传机制的关键组成部分。我们招募了209名具有罕见EHMT1变体的个体,并对鉴定的变体进行了全面的分子模拟和体外测试以及DNA甲基化(DNAm)特征分析。我们(重新)将191名个体的变体分类为可能的致病性/致病性(分子确认Kleefstra综合征)。我们提供Kleefstra综合征的最新和更广泛的临床和分子谱,包括智力正常和家族发生的个体。对EHMT1变体的分析揭示了广泛的分子效应及其相关表型,包括不同的基因型-表型关联。值得注意的是,我们表明,蛋白质改变变体(PAV)破坏了锚蛋白重复结构域的“阅读器”功能,导致KLEFS1特异性DNAm签名和较温和的表型,而SET结构域的“写入者”甲基转移酶活性的破坏不会导致KLEFS1DNA标记或典型的KLEFS1表型。同样,N-末端截短变体导致没有DNAm标签的轻度表型。我们展示了全面的变异分析如何提供对疾病发病机理和DNAm特征的见解。总之,本研究对KLEFS1和EHMT1进行了全面概述,揭示了其更广泛的光谱,加深了我们对其分子机制的理解,从而告知准确的变体解释,咨询,和临床管理。
    The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the \"reader\" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only \"writer\" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因表达的精确调节对于正确的神经发育很重要。影响EHMT1基因的9q34.3缺失导致称为Kleefstra综合征的综合征性神经发育障碍。相比之下,包含EHMT1的9q34.3基因座的重复被认为会导致发育障碍,但是只有有限的信息可用。我们已经确定了来自10个不相关家庭的15个人,9q34.3复制大小<1.5Mb时,完全包含EHMT1。临床特征包括轻度发育迟缓,轻度智力障碍或学习问题,自闭症谱系障碍,和行为问题。这些人并没有始终如一地表现出畸形特征,先天性异常,或生长异常。DNA甲基化分析显示,包含EHMT1的9q34.3重复病例的DNAm谱较弱,这可能会将大多数受影响的病例与对照分离。这项研究表明,包括EHMT1基因在内的9q34.3重复个体存在轻度非综合征性神经发育障碍,DNA甲基化变化不同于Kleefstra综合征。
    Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由编码染色质修饰的基因中的变体引起的孟德尔神经发育障碍可以归类为表观遗传机制(MDEM)的孟德尔障碍。这些疾病在分子通路和表型(包括智力障碍)上有显著的重叠,身材矮小,和肥胖。MDEM中包括Kleefstra综合征(KLFS),这是由EHMT1的单倍体不足引起的。临床前研究已经确定了KLFS模型中的代谢失调和肥胖,但缺乏适当的临床翻译。在这项研究中,我们的目标是描绘增长,身体成分,共有62例KLFS患者的内分泌代谢特征。我们的结果表明,儿童超重/肥胖的患病率很高(60%;28/47),身体脂肪百分比过高,这与以前的临床前研究完全一致。身材矮小很常见(33%),可能是由于骨骼成熟。内分泌代谢检查显示甲状腺功能失调(22%;9/41),甘油三酯升高,和降低血氨水平。此外,手部X光片显示骨矿化减少(57%;8/14)和尺骨方差阴性(71%;10/14)。我们的发现表明KLFS的代谢风险很高。因此,我们建议监测体重和内分泌代谢谱.建议支持健康的生活方式和骨矿化筛查。我们的综合结果支持翻译研究,并有助于更好地理解MDEM相关表型。
    Mendelian neurodevelopmental disorders caused by variants in genes encoding chromatin modification can be categorized as Mendelian disorders of the epigenetic machinery (MDEMs). These disorders have significant overlap in molecular pathways and phenotypes including intellectual disability, short stature, and obesity. Among the MDEMs is Kleefstra syndrome (KLFS), which is caused by haploinsufficiency of EHMT1. Preclinical studies have identified metabolic dysregulation and obesity in KLFS models, but proper clinical translation lacks. In this study, we aim to delineate growth, body composition, and endocrine-metabolic characteristics in a total of 62 individuals with KLFS. Our results revealed a high prevalence of childhood-onset overweight/obesity (60%; 28/47) with disproportionately high body fat percentage, which aligns perfectly with previous preclinical studies. Short stature was common (33%), likely due to advanced skeletal maturation. Endocrine-metabolic investigations showed thyroid dysregulation (22%; 9/41), elevated triglycerides, and decreased blood ammonia levels. Moreover, hand radiographs identified decreased bone mineralization (57%; 8/14) and negative ulnar variance (71%; 10/14). Our findings indicate a high (cardio)metabolic risk in KLFS. Therefore, we recommend monitoring of weight and endocrine-metabolic profile. Supporting a healthy lifestyle and screening of bone mineralization is advised. Our comprehensive results support translational research and contribute to a better understanding of MDEM-associated phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究调查了正常组蛋白赖氨酸甲基转移酶1(EHMT1)中不确定意义的各种变体(VUS)的功能意义,这对早期发育和正常生理至关重要。EHMT1突变导致Kleefstra综合征,并与各种人类癌症有关。然而,对这些变体的准确功能解释尚未完成,限制诊断和未来研究。为了克服这一点,我们将常规的变体调用工具与计算生物物理学和生物化学相结合,对EHMT1的SET催化结构域进行多层机制分析,这对该蛋白质功能至关重要.我们使用基于分子力学和分子动力学(MD)的指标来分析SET域结构和由域内97个Kleefstra综合征错义变异产生的功能运动。我们的方法允许我们以机械方式将变体分类为SV(结构变体),DV(动态变体),SDV(结构和动态变体),和VUS(不确定意义的变体)。我们的研究结果表明,破坏性变异主要分布在活性位点周围,底物结合位点,和pre-SET区域。总的来说,我们报道了这种方法相对于传统的变异解释工具的改进,同时提供了变异功能障碍的分子机制。
    This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research. To overcome this, we integrate conventional tools for variant calling with computational biophysics and biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants within the domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for variant interpretation and simultaneously provide a molecular mechanism for variant dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体微阵列(CMA)是一种高度准确且已建立的方法,用于在临床遗传测试中检测拷贝数变异(CNV)。CNVs是智力障碍等疾病的重要病因,发育迟缓,和多种先天性异常。最近开发的分析方法促进了较小CNV的鉴定。因此,使用较小的CNV调用阈值重新分析CMA数据可能会产生有用的信息。然而,这种方法由每个机构自行决定。
    我们使用较小的CNV调用阈值重新分析了131名患者的CMA数据:50kb50探针用于增益,25kb25探针用于损失。我们根据最近可用的信息解释了重新分析的CNVs。在重新分析中,我们使用临床基因组资源剂量敏感性基因列表作为快速有效地检查病态基因的指标来过滤数据.
    拷贝数丢失的数量大约增加了20倍,与之前的分析相比,拷贝数增加了大约三倍。我们在四名参与者中检测到新的可能的致病性CNVs:ARID1B内236.5kb的损失,包括EHMT1在内的50.6kb损失、包括EHMT1在内的46.5kb损失和FOXP1基因内的89.1kb损失。
    本研究中采用的方法对于使用较小的CNV调用阈值的CMA数据重新分析是简单且有效的。因此,这种方法对于持续分析和重复分析都是有效的。这项研究可能会激发临床实验室对重新分析方法的进一步讨论。
    UNASSIGNED: Chromosomal microarray (CMA) is a highly accurate and established method for detecting copy number variations (CNVs) in clinical genetic testing. CNVs are important etiological factors for disorders such as intellectual disability, developmental delay, and multiple congenital anomalies. Recently developed analytical methods have facilitated the identification of smaller CNVs. Therefore, reanalyzing CMA data using a smaller CNV calling threshold may yield useful information. However, this method was left to the discretion of each institution.
    UNASSIGNED: We reanalyzed the CMA data of 131 patients using a smaller CNV call threshold: 50 kb 50 probes for gain and 25 kb 25 probes for loss. We interpreted the reanalyzed CNVs based on the most recently available information. In the reanalysis, we filtered the data using the Clinical Genome Resource dosage sensitivity gene list as an index to quickly and efficiently check morbid genes.
    UNASSIGNED: The number of copy number loss was approximately 20 times greater, and copy number gain was approximately three times greater compared to those in the previous analysis. We detected new likely pathogenic CNVs in four participants: a 236.5 kb loss within ARID1B, a 50.6 kb loss including EHMT1, a 46.5 kb loss including EHMT1, and an 89.1 kb loss within the FOXP1 gene.
    UNASSIGNED: The method employed in this study is simple and effective for CMA data reanalysis using a smaller CNV call threshold. Thus, this method is efficient for both ongoing and repeated analyses. This study may stimulate further discussion of reanalysis methodology in clinical laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    EHTM1(GLP)和EHMT2(G9a)是密切相关的蛋白质赖氨酸甲基转移酶,通常被认为在包括转录调控在内的各种细胞过程中作为甲基化组蛋白H3和非组蛋白底物的异源二聚体共同发挥作用。基因组甲基化,DNA修复在这里,我们显示EHMT1/2抑制剂导致ATM介导的复制叉进展减慢,单链复制间隙的积累,细胞溶质DNA的出现,增加STING的表达。EHMT1/2抑制强烈增强了在Tripe阴性乳腺癌小鼠模型中烷基化化疗和抗PD-1免疫疗法的功效。对DNA复制和烷化剂敏感性的影响主要是由EHMT1介导的LIG1甲基化的丧失引起的,而升高的STING表达和对免疫疗法的显着反应似乎主要是由EHMT2活性的丧失引起的。UHRF1(一种已知与EHMT1/2和LIG1相关的蛋白质)的耗竭也诱导STING表达,EHMT2或UHRF1的消耗导致STING1启动子中特定CpG位点的去甲基化,提示不同的EHMT2-UHRF1轴调节DNA甲基化和基因转录。这些结果突出了两种EHMT旁系同源物的不同功能,并为涉及烷化剂和免疫检查点抑制剂的组合疗法提供了启发性范例和相应的分子基础。
    EHTM1 (GLP) and EHMT2 (G9a) are closely related protein lysine methyltransferases often thought to function together as a heterodimer to methylate histone H3 and non-histone substrates in diverse cellular processes including transcriptional regulation, genome methylation, and DNA repair. Here we show that EHMT1/2 inhibitors cause ATM-mediated slowdown of replication fork progression, accumulation of single-stranded replication gaps, emergence of cytosolic DNA, and increased expression of STING. EHMT1/2 inhibition strongly potentiates the efficacy of alkylating chemotherapy and anti-PD-1 immunotherapy in mouse models of tripe negative breast cancer. The effects on DNA replication and alkylating agent sensitivity are largely caused by the loss of EHMT1-mediated methylation of LIG1, whereas the elevated STING expression and remarkable response to immunotherapy appear mainly elicited by the loss of EHMT2 activity. Depletion of UHRF1, a protein known to be associated with EHMT1/2 and LIG1, also induces STING expression, and depletion of either EHMT2 or UHRF1 leads to demethylation of specific CpG sites in the STING1 promoter, suggestive of a distinct EHMT2-UHRF1 axis that regulates DNA methylation and gene transcription. These results highlight distinct functions of the two EHMT paralogs and provide enlightening paradigms and corresponding molecular basis for combination therapies involving alkylating agents and immune checkpoint inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    EHMT1是一种具有组蛋白甲基转移酶活性的表观遗传因子,在Kleefstra综合征中出现突变,一种以发育迟缓为特征的神经发育遗传疾病,智力残疾,和自闭症的特征。尽管该基因的功能和疾病的分子病因的研究最近取得了进展,我们对EHMT1单倍功能不全如何导致Kleefstra综合征的了解仍然非常有限.这里,我们发现RPE1细胞中EHMT1的耗竭导致不同亚细胞结构的形态和分布改变,比如高尔基体,溶酶体和不同的细胞粘附成分。EHMT1下调也增加了centriar卫星检测,这可能表明EHMT1在中心体功能中的作用。此外,EHMT1耗尽细胞的迁移过程也发生了改变,显示迁移能力降低。我们认为所描述的表型可以为理解Kleefstra综合征中EHMT1单倍体功能不全的功能影响开辟新的可能性。有助于阐明表观遗传调控与导致这种神经发育障碍的潜在细胞机制之间的联系。这些知识不仅与这种综合征的治疗有关,但也适用于其他神经发育条件,这些条件可能共享类似的失调的细胞途径。
    EHMT1 is an epigenetic factor with histone methyltransferase activity that appears mutated in Kleefstra syndrome, a neurodevelopmental genetic disorder characterized by developmental delay, intellectual disability, and autistic-like features. Despite recent progress in the study of the function of this gene and the molecular etiology of the disease, our knowledge of how EHMT1 haploinsufficiency causes Kleefstra syndrome is still very limited. Here, we show that EHMT1 depletion in RPE1 cells leads to alterations in the morphology and distribution of different subcellular structures, such as the Golgi apparatus, the lysosomes and different cell adhesion components. EHMT1 downregulation also increases centriolar satellites detection, which may indicate a role for EHMT1 in centrosome functioning. Furthermore, the migration process is also altered in EHMT1 depleted cells, which show reduced migration capacity. We consider that the described phenotypes could open new possibilities for understanding the functional impact of EHMT1 haploinsufficiency in Kleefstra syndrome, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in this neurodevelopmental disorder. This knowledge could be relevant not only for the treatment of this syndrome, but also for other neurodevelopmental conditions that could share similar deregulated cellular pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类的Kleefstra综合征的特征是发育普遍延迟,智力障碍和自闭症特征。这种疾病的小鼠模型(Ehmt1±)表达焦虑,自闭症样特征,以及与非女性交往的异常社会互动。为了研究Ehmt1±小鼠如何在不熟悉的物种下表现,我们允许成年人,雄性动物在中性环境中自由互动10分钟,主机-访客设置中的新颖环境。在Ehmt1±小鼠为宿主的试验中,有防御和进攻行为。我们的关键发现是Ehmt1±小鼠表现出防御姿势,攻击和咬人;相比之下,野生型(WT)与其他WT的相互作用没有产生这样的行为。Further,如果Ehmt1±和WT小鼠之间发生了战斗,Ehmt1±动物是最具攻击性的,并且总是引发这些行为。
    Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号