DTT, d,l-dithiothreitol

DTT,D,l - 二硫苏糖醇
  • 文章类型: Journal Article
    化疗和免疫疗法的结合通过引发免疫原性细胞死亡(ICD)来激发强大的免疫系统,在抑制肿瘤生长和改善免疫抑制肿瘤微环境(ITM)方面显示出巨大的潜力。然而,低劣的药物生物利用度限制了治疗效果。在这里,我们报道了一种通用的生物响应性阿霉素(DOX)基纳米凝胶,可实现肿瘤特异性药物共递送。设计并选择基于DOX的甘露糖纳米凝胶(DMNG)作为示例,以阐明联合化学免疫疗法的机制。不出所料,DMNG表现出显著的胶束稳定性,选择性药物释放和延长生存时间,受益于增强肿瘤通透性和延长血液循环。我们发现由DMNG递送的DOX可以通过促进ICD来诱导强大的抗肿瘤免疫应答。同时,从DMNGs释放的甘露糖被证明在体外和体内对乳腺癌具有强大的协同治疗作用,通过破坏糖酵解和三羧酸循环中的葡萄糖代谢。总的来说,基于DOX的纳米凝胶对肿瘤微环境的调节有望成为一种有效的候选策略,以克服基于ICD的免疫治疗的当前局限性。为免疫调节纳米药物的开发提供了范例。
    The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The combination of paclitaxel (PTX) and doxorubicin (DOX) has been widely used in the clinic. However, it remains unsatisfied due to the generation of severe toxicity. Previously, we have successfully synthesized a prodrug PTX-S-DOX (PSD). The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX. Thus, we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation. Due to the fact that copper ions (Cu2+) could coordinate with the anthracene nucleus of DOX, we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+ gradient. Hence, we designed a remote loading liposomal formulation of PSD (PSD LPs) for combination chemotherapy. The prepared PSD LPs displayed extended blood circulation, improved tumor accumulation, and more significant anti-tumor efficacy compared with PSD NPs. Furthermore, PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil, indicating better safety. Therefore, this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Members of the RAS proto-oncogene superfamily are indispensable molecular switches that play critical roles in cell proliferation, differentiation, and cell survival. Recent studies have attempted to prevent the interaction of RAS/GTP with RAS guanine nucleotide exchange factors (GEFs), impair RAS-effector interactions, and suppress RAS localization to prevent oncogenic signalling. The present study aimed to investigate the effect of the natural triterpenoic acid inhibitor glycyrrhetinic acid, which is isolated from the roots of Glycyrrhiza plant species, on RAS stability. We found that glycyrrhetinic acid may bind to the P-loop of RAS and alter its stability. Based on our biochemical tests and structural analysis results, glycyrrhetinic acid induced a conformational change in RAS. Meanwhile, glycyrrhetinic acid abolishes the function of RAS by interfering with the effector protein RAF kinase activation and RAS/MAPK signalling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    前药纳米组件,可以避免使用大型赋形剂,实现更高的载药量和控制药物释放,已被列为药物输送系统的优先事项。推测谷胱甘肽(GSH)和活性氧(ROS)在肿瘤组织中高度升级,这使它们成为药物递送系统的有吸引力的靶标,我们设计并合成了一种新型前药,该前药利用单硫醚键作为连接基来桥接亚油酸(LA)和多西他赛(DTX)。这种单硫醚连接的缀合物(DTX-S-LA)可以在没有许多赋形剂的帮助下自组装成纳米颗粒。单硫醚赋予纳米颗粒氧化还原敏感性,导致在肿瘤组织处的特异性释放。我们的研究表明,纳米组装体具有均匀的粒径,高稳定性和快速释放行为。DTX-S-LA纳米组装体在药代动力学曲线上优于DTX溶液,因为其具有更长的循环时间和更高的曲线下面积(AUC)。与DTX解决方案相比,氧化还原双响应纳米组装体具有相当的细胞毒活性.此外,在携带4T1异种移植物的小鼠中评估抗肿瘤功效。事实证明,这种纳米组装体可以通过增加剂量来增强抗癌功效,因为它具有更高的耐受性。总的来说,这些结果表明,氧化还原敏感性纳米组装体可能具有巨大的癌症治疗潜力。
    Prodrug nanoassemblies, which can refrain from large excipients, achieve higher drug loading and control drug release, have been placed as the priority in drug delivery system. Reasoning that glutathione (GSH) and reactive oxygen species (ROS) are highly upgraded in tumor tissues which makes them attractive targets for drug delivery system, we designed and synthetized a novel prodrug which utilized mono thioether bond as a linker to bridge linoleic acid (LA) and docetaxel (DTX). This mono thioether-linked conjugates (DTX-S-LA) could self-assemble into nanoparticles without the aid of much excipients. The mono thioether endowed the nanoparticles redox sensitivity resulting in specific release at the tumor tissue. Our studies demonstrated that the nanoassemblies had uniform particle size, high stability and fast release behavior. DTX-S-LA nanoassemblies outperformed DTX solution in pharmacokinetic profiles for it had longer circulation time and higher area under curve (AUC). Compared with DTX solution, the redox dual-responsive nanoassemblies had comparable cytotoxic activity. Besides, the antitumor efficacy was evaluated in mice bearing 4T1 xenograft. It turned out this nanoassemblies could enhance anticancer efficacy by increasing the dose because of higher tolerance. Overall, these results indicated that the redox sensitivity nanoassemblies may have a great potential to cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号