DNA Polymerase theta

DNA 聚合酶 θ
  • 文章类型: Journal Article
    无碱基位点是通过碱基切除修复修复的DNA损伤。单链DNA(ssDNA)中未修复的无碱基位点的切割可导致DNA复制过程中的染色体断裂。如何防止脱碱基DNA的破裂仍然知之甚少。这里,使用低温电子显微镜(cryo-EM),非洲爪狼卵提取物,和人类细胞,我们表明RAD51核丝特异性识别和保护脱碱基位点,增加RAD51与DNA的结合率。在没有BRCA2或RAD51的情况下,由于DNA碱基甲基化,无碱基位点积累,氧化,和脱氨,诱导无碱基ssDNA缺口,使复制的DNA纤维对APE1敏感。组装在无碱基DNA上的RAD51防止MRE11-RAD50复合物的无碱基位点切割,抑制由过量的无碱基位点或POLθ聚合酶抑制触发的复制叉断裂。我们的研究强调了BRCA2和RAD51在保护DNA模板中因碱基改变而产生的未修复的无碱基位点方面的关键作用,确保基因组稳定性。
    Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:PARP抑制剂(PARPi),他拉索帕尼(BMN673),有效和特异性放射增敏癌细胞。放射敏化是由电离辐射(IR)诱导的DNA双链断裂(DSB)向不依赖PARP1的修复转移介导的,替代端连接(alt-EJ)。DNA聚合酶theta(Polθ)是这种不依赖PARP1的alt-EJ途径的关键组成部分,我们在此表明其抑制可以进一步使talazoparib处理的细胞辐射敏感。本工作的目的是探索在HR丰富的癌细胞中通过Polθ抑制剂增强的talazoparib放射增敏作用的机制和动力学。
    方法:对PARPis的放射增敏,talazoparib,奥拉帕利,rucaparib和veliparib通过克隆形成的存活率进行评估。用PARPis和/或用Polθ抑制剂ART558或新生霉素处理Polθ丰富和缺乏的细胞。通过使用siRNA下调CtIP和MRE11表达来研究DNA末端切除的作用。通过对γH2AX病灶评分评估DSB修复。使用G2特异性细胞遗传学分析评估染色体异常的形成作为alt-EJ功能的证据。
    结果:Talazoparib发挥了明显的放射增敏作用,在测试的癌细胞系中有所不同;然而,在正常细胞中无法检测到放射致敏作用.其他常用的PARPis,奥拉帕利,在我们的条件下,veliparib或rucaparib是无效的放射增敏剂。尽管对Pole的遗传消融或药理学抑制仅轻度放射致敏的癌细胞,talazoparib处理的细胞明显进一步放射增敏。机械上,talazoparib通过以CtIP和MRE11依赖性方式增强DNA末端切除,将DSB分流到Polθ依赖性alt-EJ-在低,但不是高IR剂量。暴露于Pole抑制剂的talazoparib处理的细胞中的染色体易位分析表明,PARP1-和Pole依赖性alt-EJ途径可以补充,但也互相备份。
    结论:我们建议talazoparib促进低剂量,CtIP/MRE11依赖性切除,并增加了对辐照的HR高的癌细胞的依赖性,关于Polθ介导的alt-EJ。Pole抑制剂与talazoparib的组合抑制了这种选择并导致进一步的放射增敏。结果表明,可以利用Polθ抑制来最大程度地提高临床上HR高肿瘤的talazoparib放射敏感性。
    OBJECTIVE: The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. The purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells.
    METHODS: Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis.
    RESULTS: Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib, or rucaparib were ineffective radiosensitizers under our experimental conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also back up each other.
    CONCLUSIONS: We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. The combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA聚合酶theta(Polθ)是一种DNA解旋酶-聚合酶蛋白,可促进DNA修复,并且对同源定向修复(HDR)因子具有合成致死性。因此,Pole是HDR缺陷癌症中一种有前途的精准肿瘤药物靶标。这里,我们使用cryo-EM表征了Polθ解旋酶(Polθ-hel)小分子抑制剂(AB25583)的结合和作用机制。AB25583对Pole-hel,选择性杀死BRCA1/2缺陷细胞,并在携带致病性BRCA1/2突变的癌细胞中与奥拉帕尼协同作用。Cryo-EM在3.0-3.2µ上主要发现二聚体Polθ-hel:AB25583复杂结构。这些结构揭示了解旋酶中央通道深处的结合袋,这强调了AB25583的高特异性和效力。低温EM结构与生化数据的结合表明,AB25583通过变构机制抑制了Polθ-hel解旋酶的ATPase活性。这些关于AB25583抑制的详细结构数据和见解为加速HDR缺陷型癌症中靶向Pole-hel的药物开发铺平了道路。
    DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结直肠癌(CRC)是全球最常见的恶性肿瘤之一。双链断裂(DSB)是最严重的DNA损伤类型。然而,很少有审查彻底审查DSB在CRC中的参与。最新研究表明,DSB修复在CRC中起着重要作用。例如,DSB相关基因如BRCA1、Ku-70和DNA聚合酶θ(POLQ)与CRC的发生有关,POLQ甚至影响CRC的预后和放疗耐药性。这篇综述全面总结了DSB在CRC中的作用,探讨其机制,并讨论与CRC治疗的关联。已经证明了DSB的四种途径。1.非同源末端连接(NHEJ)是主要途径。其核心基因包括Ku70和Ku80结合到断裂的末端并募集修复因子以形成介导DNA断裂连接的复合物。2.同源重组(HR)是另一个重要的途径。其关键基因包括BRCA1和BRCA2参与发现,配对,连接断裂的两端,并确保正常双链DNA结构中断裂的恢复。3.单链退火(SSA)途径,和4。POLθ介导的末端连接(alt-EJ)是备用途径。本文阐述了DSB修复途径在CRC中的作用。这可能有助于开发潜在的新治疗方法,并为CRC治疗提供新的机会,以及基于针对这些DNA修复途径的治疗策略的更多个性化治疗选择。
    Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA聚合酶theta(Polθ)介导的末端连接(TMEJ)修复DNA双链断裂并赋予对遗传毒性剂的抗性。如何在分子水平上调节Polθ以发挥TMEJ仍然缺乏表征。我们发现Polθ与PARP1以HPFl非依赖性方式相互作用并被PARP1化。PARP1通过依赖PARylation的液体分层将Polθ募集到DNA损伤附近,然而,PARylatedPolθ由于无法结合DNA而无法进行TMEJ。PARG介导的Polθ去PARG激活其DNA结合和末端连接活性。与此一致,PARG对TMEJ至关重要,PARG对DNA损伤的时间募集与TMEJ激活和PARP1和PAR的消散相对应。总之,我们展示了TMEJ调控的两步时空机制。首先,PARP1PARylatePole并促进其在失活状态下募集到DNA损伤位点。PARG随后通过去除Pole上的抑制性PAR标记来激活TMEJ。
    DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:乳腺癌细胞中的BRCA1/2突变损害同源重组并促进DNA损伤修复的替代末端连接(Alt-EJ)。DNA聚合酶θ,由POLQ编码,在Alt-EJ中起着至关重要的作用,使其成为潜在的治疗靶点,特别是在BRCA1/2突变癌症中。蛋氨酸限制是靶向癌细胞的一种有前途的方法,因为它们对这种氨基酸成瘾。本研究在蛋氨酸限制下研究了BRCA1/2野生型和BRCA1突变型乳腺癌细胞中POLQ的表达。
    方法:使用qRT-PCR在BRCA1/2野生型(MDA-MB-231)和BRCA1-突变型(HCC1937和MDA-MB-436)乳腺癌细胞中测量POLQmRNA的表达。或血清限制,或血清和蛋氨酸限制条件。
    结果:与BRCA1/2野生型细胞相比,BRCA1突变细胞在正常培养基中表现出明显更高的基础POLQ表达。甲硫氨酸限制进一步增加了BRCA1突变细胞中的POLQ表达,但降低了BRCA1/2野生型细胞中的POLQ表达。
    结论:目前的研究结果表明,蛋氨酸限制对POLQ表达有不同的影响,可能影响Alt-EJ活动,在BRCA1/2野生型和BRCA1突变型乳腺癌细胞中。需要进一步的研究来探索结合甲硫氨酸限制和DNA修复抑制剂的潜力,如PARP抑制剂,克服BRCA1/2突变癌症的耐药性。
    OBJECTIVE: BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction.
    METHODS: POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions.
    RESULTS: Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells.
    CONCLUSIONS: The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当其他DNA双链断裂修复途径受损时,θ介导的末端连接(TMEJ)对于癌细胞的存活至关重要。人类DNA聚合酶θ(Polθ)可以延伸单链DNA寡核苷酸,但对首选底物和机制知之甚少。我们证明Polθ可以通过仅由两个3'末端碱基对引发的单分子茎环合成来扩展单链DNA和RNA底物。如果有足够的时间,Polθ使用替代配对配置,极大地扩展了序列结果的库。当核苷酸库不平衡时,进一步的引物-模板调整产生低保真度结果。单分子茎环合成与双分子末端连接竞争,甚至当用于末端连接的更长的末端微同源性可用时。两个反应都被ssDNA结合蛋白RPA部分抑制。快速茎环合成需要对Polθ具有特异性的蛋白质引物抓取残基。从最小配对引物进行茎环合成的能力在人类DNA聚合酶中是罕见的,但我们表明人类DNA聚合酶Polη和Polλ可以催化相关反应。使用纯化的人Polθ,我们在体外重建了TMEJ,其中包含了由茎环延伸引起的插入。这些活动可能有助于解释包括反向重复序列的TMEJ修复事件。
    Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3\' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据CDC的说法,Pfizer和ModernaCOVID-19疫苗均含有核苷修饰的信使RNA(mRNA),编码由冠状病毒引起的严重急性呼吸道综合征(SARS-CoV-2)的病毒刺突糖蛋白,通过肌肉注射给药。尽管它们在全球范围内使用,关于mRNA序列中的核苷修饰如何影响其分解知之甚少,转录和蛋白质合成。希望吸引到注射部位的驻留和循环免疫细胞复制刺突蛋白,而注射的mRNA在几天内降解。最初还估计由mRNA疫苗产生的重组刺突蛋白将在体内持续数周。在现实中,现在的临床研究报告说,改良的SARS-CoV-2mRNA通常在注射后持续长达一个月,并且可以在炎症和纤维化部位的心肌和骨骼肌中检测到,而重组刺突蛋白可能在血液中持续半年多一点。用1-甲基苄(富含假尿苷)mRNA接种疫苗可以在主要组织相容性复杂多样的人群中引起对1核糖体移码产生的肽抗原的细胞免疫。使用液相色谱串联质谱法翻译1-甲基苄mRNA,鉴定出9种源自mRNA1框架的肽。这些产物影响脱靶宿主T细胞免疫,包括增加新B细胞抗原的产生,具有深远的临床后果。作为一个例子,在接种疫苗的患者中长达半年(180天),心肌18-氟脱氧葡萄糖的摄取显著增加.这篇综述文章的重点是医学生物化学,蛋白质组学和detutenomics原理解释了循环中持续存在的尖峰现象,即使在无症状的个体中也是如此。脯氨酸和羟脯氨酸残基是结构蛋白中突出的氘(重氢)结合位点,具有强大的同位素稳定性,不仅抵抗酶促分解,但几乎所有的(非)酶切割机制已知的化学。
    According to the CDC, both Pfizer and Moderna COVID-19 vaccines contain nucleoside-modified messenger RNA (mRNA) encoding the viral spike glycoprotein of severe acute respiratory syndrome caused by corona virus (SARS-CoV-2), administered via intramuscular injections. Despite their worldwide use, very little is known about how nucleoside modifications in mRNA sequences affect their breakdown, transcription and protein synthesis. It was hoped that resident and circulating immune cells attracted to the injection site make copies of the spike protein while the injected mRNA degrades within a few days. It was also originally estimated that recombinant spike proteins generated by mRNA vaccines would persist in the body for a few weeks. In reality, clinical studies now report that modified SARS-CoV-2 mRNA routinely persist up to a month from injection and can be detected in cardiac and skeletal muscle at sites of inflammation and fibrosis, while the recombinant spike protein may persist a little over half a year in blood. Vaccination with 1-methylΨ (pseudouridine enriched) mRNA can elicit cellular immunity to peptide antigens produced by +1 ribosomal frameshifting in major histocompatibility complex-diverse people. The translation of 1-methylΨ mRNA using liquid chromatography tandem mass spectrometry identified nine peptides derived from the mRNA +1 frame. These products impact on off-target host T cell immunity that include increased production of new B cell antigens with far reaching clinical consequences. As an example, a highly significant increase in heart muscle 18-flourodeoxyglucose uptake was detected in vaccinated patients up to half a year (180 days). This review article focuses on medical biochemistry, proteomics and deutenomics principles that explain the persisting spike phenomenon in circulation with organ-related functional damage even in asymptomatic individuals. Proline and hydroxyproline residues emerge as prominent deuterium (heavy hydrogen) binding sites in structural proteins with robust isotopic stability that resists not only enzymatic breakdown, but virtually all (non)-enzymatic cleavage mechanisms known in chemistry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    EB病毒(EBV)癌症的治疗选择有限,强调需要新的治疗方法。我们以前已经表明,EBV转化的细胞和癌症缺乏同源重组(HR)修复,修复双链DNA断裂的突出的无错误途径;相反,EBV转化的细胞显示出易错微同源性介导的末端连接(MMEJ)修复途径的全基因组疤痕。这表明EBV癌症易受靶向MMEJ修复的合成致死治疗方法的影响。的确,我们以前发现针对PARP,一种有助于MMEJ的酶,导致EBV淋巴瘤细胞死亡。随着对PARP抑制剂的临床耐药性的出现以及最近发现的聚合酶θ(POLθ)抑制剂,MMEJ必需的聚合酶,我们研究了POLθ在EBV淋巴瘤细胞中的作用。我们报道EBV转化的细胞系,EBV淋巴瘤细胞系,艾滋病患者的EBV淋巴瘤表现出更多的POLθ,与未感染EBV的原代淋巴细胞和AIDS患者的EBV阴性淋巴瘤(一组也大量表达POLθ)相比,由EBV蛋白EBNA1驱动。我们还发现POLθ在细胞DNA复制叉上富集,暴露于POLθ抑制剂Novobiocin会阻碍复制叉的进展,削弱MMEJ介导的DNA双链断裂修复,杀死EBV淋巴瘤细胞.值得注意的是,细胞杀伤不是由于Novobiocin诱导的EBV裂解/复制期的激活。这些发现支持POLθ不仅在DNA修复中而且在DNA复制中的作用,并且作为EBV淋巴瘤和潜在的其他EBV癌症中的治疗靶标,因为EBNA1在所有EBV癌症中表达。IMPORTANCEEpstein-Barr病毒(EBV)占全球癌症负担的约2%。最近估计每年死亡人数超过20万人,识别分子脆弱性将是管理这些经常侵袭性和治疗抗性癌症的关键.基于我们早期的工作,证明EBV癌症依赖于微同源介导的末端连接修复,我们现在报道EBV淋巴瘤和转化的B细胞系大量表达MMEJ酶POLθ,该酶可能保护细胞复制叉并修复与复制相关的细胞DNA断裂。重要的是,我们发现一种新发现的POLθ抑制剂可以杀死EBV癌细胞,揭示了一种新的策略来阻断这些侵袭性癌症的DNA复制和修复。
    Treatment options for Epstein-Barr virus (EBV)-cancers are limited, underscoring the need for new therapeutic approaches. We have previously shown that EBV-transformed cells and cancers lack homologous recombination (HR) repair, a prominent error-free pathway that repairs double-stranded DNA breaks; instead, EBV-transformed cells demonstrate genome-wide scars of the error-prone microhomology-mediated end joining (MMEJ) repair pathway. This suggests that EBV-cancers are vulnerable to synthetic lethal therapeutic approaches that target MMEJ repair. Indeed, we have previously found that targeting PARP, an enzyme that contributes to MMEJ, results in the death of EBV-lymphoma cells. With the emergence of clinical resistance to PARP inhibitors and the recent discovery of inhibitors of Polymerase theta (POLθ), the polymerase essential for MMEJ, we investigated the role of POLθ in EBV-lymphoma cells. We report that EBV-transformed cell lines, EBV-lymphoma cell lines, and EBV-lymphomas in AIDS patients demonstrate greater abundance of POLθ, driven by the EBV protein EBNA1, compared to EBV-uninfected primary lymphocytes and EBV-negative lymphomas from AIDS patients (a group that also abundantly expresses POLθ). We also find POLθ enriched at cellular DNA replication forks and exposure to the POLθ inhibitor Novobiocin impedes replication fork progress, impairs MMEJ-mediated repair of DNA double-stranded breaks, and kills EBV-lymphoma cells. Notably, cell killing is not due to Novobiocin-induced activation of the lytic/replicative phase of EBV. These findings support a role for POLθ not just in DNA repair but also DNA replication and as a therapeutic target in EBV-lymphomas and potentially other EBV-cancers as EBNA1 is expressed in all EBV-cancers.IMPORTANCEEpstein-Barr virus (EBV) contributes to ~2% of the global cancer burden. With a recent estimate of >200,000 deaths a year, identifying molecular vulnerabilities will be key to the management of these frequently aggressive and treatment-resistant cancers. Building on our earlier work demonstrating reliance of EBV-cancers on microhomology-mediated end-joining repair, we now report that EBV lymphomas and transformed B cell lines abundantly express the MMEJ enzyme POLθ that likely protects cellular replication forks and repairs replication-related cellular DNA breaks. Importantly also, we show that a newly identified POLθ inhibitor kills EBV-cancer cells, revealing a novel strategy to block DNA replication and repair of these aggressive cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA双链断裂(DSB)是基因组完整性最严重的威胁之一,要求真核细胞内复杂的修复机制。各种各样的因素协调了DSB信号和修复的复杂编排,包括修复途径,例如非同源末端连接,同源重组,和聚合酶-θ介导的末端连接。这篇综述探讨了指导真核细胞走向特定修复途径的复杂决策过程,特别强调两端DSB的处理。此外,我们阐明了Cas9的转化作用,一种位点特异性核酸内切酶,彻底改变我们对DNADSB修复动力学的理解。此外,我们探索了Cas9诱导序列特异性DSB的显着能力的新兴潜力,为精确靶向肿瘤细胞提供了一条有希望的途径。通过这次全面的探索,我们解开了细胞对DSB反应的复杂分子机制,揭示了基本的修复过程和尖端的治疗策略。
    DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9\'s remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号